Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jumping Atoms Observed

14.09.2009
Under Observation - Restless Atoms Cause Materials To Age

Atoms have the habit of jumping through solids - a practice that physicists have recently been able to follow for the first time using a brand new method. This scientific advance was made possible thanks to the utilisation of cutting-edge X-ray sources, known as electron synchrotrons.

The detailed findings of the project, backed by the Austrian Science Fund FWF, were recently published in the prestigious journal NATURE MATERIALS. The work unlocks new potential for the study of material ageing processes at the atomic level.

Now and then, things can get pretty "wild" in solids. For example, billions of atoms in a gold ring can shift position every second. However, it is not just ordinary people who cannot see the atoms jumping around - physicists too have long been unable to witness this process for themselves. However, there is one very good reason in particular why scientists should want to change all that. The restlessness of atoms is responsible for ageing, and therefore the loss of specific material properties.

Scientific understanding of atomic movement has now been significantly enhanced. A team of researchers from the Faculty of Physics at the University of Vienna have pioneered a method to directly track atoms as they jump through solids. To achieve this breakthrough, the team applied state-of-the-art technology in the form of the European Synchrotron Radiation Facility in Grenoble, France, which creates special X-rays of exceptional intensity and quality. These X-rays - which can at present only be generated at three research facilities worldwide - allowed the researchers to observe the movement of atoms in a copper/gold alloy.

TWICE THE JUMP RATE
The scientists discovered how far and in what directions atoms jump, and how this movement is affected by temperature. Team member Mag. Michael Leitner
explains: "Our investigations have shown that, at a temperature of 270 degrees Celsius, atoms change position in the crystal lattice about once per hour. But that's not all. If we increase the temperature by just 10 degrees Celsius, the jump rate of the atoms doubles. And, of course, the same happens in reverse - if the temperature drops by 10 degrees, the atoms only jump half as often."

In the future, the recently accomplished experiment will serve as a basis for the measurement of atomic movement in numerous, technically important metallic systems. This is an important first step in understanding the ageing processes of materials, which is due to the internal unrest of atoms.
For example, to ensure that a car engine does not wear and that a computer can function properly, foreign atoms need to be allocated to specific positions under controlled production conditions, usually at high temperatures. Unfortunately, these atoms also tend to leave their "allocated" positions quickly when exposed to high temperatures and, as a result, the materials lose their desired properties.

THE MEANS ARE THE END
Quite apart from the findings on atomic movement yielded by the experiment, the very implementation of the project itself is a major achievement.
Indeed, it was only the ingenious use of various filters that enabled the scientists to extract special "coherent" X-rays from the synchrotron. This alone constitutes an enormous advance in the Vienna-based physics team's field of research. Mag. Leitner: "Work is currently underway to enhance the quality of X-rays even further. For example, the European X-ray Free-Electron-Laser is being built in Hamburg, Germany. This laser will open up a whole range of new and exciting possibilities."

The European X-ray Laser is to be used for applications well beyond the investigation of materials. It will also be a unique tool in the study of structures in vital substances such as proteins. Although the use of "coherent" X-rays is still in its infancy, the FWF-supported project has already taken an important step towards their universal application - placing Austrian scientists at the forefront of scientific progress.

Original publication: "Atomic diffusion studied with coherent X-rays" M.
Leitner, B. Sepiol, L. Stadler, B. Pfau & G. Vogl. Nature Materials 8, 717 ­ 720 (2009), DOI: 10.1038/nmat2506

Scientific Contact:
Mag. Michael Leitner
University of Vienna
Faculty of Physics
Strudlhofgasse 4
1090 Wien
Austria
T +43 / 1 / 42 77 - 513 10
E michael.leitner@univie.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Wien
Austria
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations for Research & Education Campus Vienna Biocenter 2 1030 Wien Austria T +43 / 1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Ramona Seba | University of Vienna
Further information:
http://www.fwf.ac.at
http://www.fwf.ac.at/en/public_relations/press/pv200909-en.html
http://www.univie.ac.at

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>