Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jumping Atoms Observed

14.09.2009
Under Observation - Restless Atoms Cause Materials To Age

Atoms have the habit of jumping through solids - a practice that physicists have recently been able to follow for the first time using a brand new method. This scientific advance was made possible thanks to the utilisation of cutting-edge X-ray sources, known as electron synchrotrons.

The detailed findings of the project, backed by the Austrian Science Fund FWF, were recently published in the prestigious journal NATURE MATERIALS. The work unlocks new potential for the study of material ageing processes at the atomic level.

Now and then, things can get pretty "wild" in solids. For example, billions of atoms in a gold ring can shift position every second. However, it is not just ordinary people who cannot see the atoms jumping around - physicists too have long been unable to witness this process for themselves. However, there is one very good reason in particular why scientists should want to change all that. The restlessness of atoms is responsible for ageing, and therefore the loss of specific material properties.

Scientific understanding of atomic movement has now been significantly enhanced. A team of researchers from the Faculty of Physics at the University of Vienna have pioneered a method to directly track atoms as they jump through solids. To achieve this breakthrough, the team applied state-of-the-art technology in the form of the European Synchrotron Radiation Facility in Grenoble, France, which creates special X-rays of exceptional intensity and quality. These X-rays - which can at present only be generated at three research facilities worldwide - allowed the researchers to observe the movement of atoms in a copper/gold alloy.

TWICE THE JUMP RATE
The scientists discovered how far and in what directions atoms jump, and how this movement is affected by temperature. Team member Mag. Michael Leitner
explains: "Our investigations have shown that, at a temperature of 270 degrees Celsius, atoms change position in the crystal lattice about once per hour. But that's not all. If we increase the temperature by just 10 degrees Celsius, the jump rate of the atoms doubles. And, of course, the same happens in reverse - if the temperature drops by 10 degrees, the atoms only jump half as often."

In the future, the recently accomplished experiment will serve as a basis for the measurement of atomic movement in numerous, technically important metallic systems. This is an important first step in understanding the ageing processes of materials, which is due to the internal unrest of atoms.
For example, to ensure that a car engine does not wear and that a computer can function properly, foreign atoms need to be allocated to specific positions under controlled production conditions, usually at high temperatures. Unfortunately, these atoms also tend to leave their "allocated" positions quickly when exposed to high temperatures and, as a result, the materials lose their desired properties.

THE MEANS ARE THE END
Quite apart from the findings on atomic movement yielded by the experiment, the very implementation of the project itself is a major achievement.
Indeed, it was only the ingenious use of various filters that enabled the scientists to extract special "coherent" X-rays from the synchrotron. This alone constitutes an enormous advance in the Vienna-based physics team's field of research. Mag. Leitner: "Work is currently underway to enhance the quality of X-rays even further. For example, the European X-ray Free-Electron-Laser is being built in Hamburg, Germany. This laser will open up a whole range of new and exciting possibilities."

The European X-ray Laser is to be used for applications well beyond the investigation of materials. It will also be a unique tool in the study of structures in vital substances such as proteins. Although the use of "coherent" X-rays is still in its infancy, the FWF-supported project has already taken an important step towards their universal application - placing Austrian scientists at the forefront of scientific progress.

Original publication: "Atomic diffusion studied with coherent X-rays" M.
Leitner, B. Sepiol, L. Stadler, B. Pfau & G. Vogl. Nature Materials 8, 717 ­ 720 (2009), DOI: 10.1038/nmat2506

Scientific Contact:
Mag. Michael Leitner
University of Vienna
Faculty of Physics
Strudlhofgasse 4
1090 Wien
Austria
T +43 / 1 / 42 77 - 513 10
E michael.leitner@univie.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Wien
Austria
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations for Research & Education Campus Vienna Biocenter 2 1030 Wien Austria T +43 / 1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Ramona Seba | University of Vienna
Further information:
http://www.fwf.ac.at
http://www.fwf.ac.at/en/public_relations/press/pv200909-en.html
http://www.univie.ac.at

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>