Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Journey to the Limits of Spacetime

22.02.2013
Black hole simulations on XSEDE supercomputers present new view of jets and accretion disks
Voracious absences at the center of galaxies, black holes shape the growth and death of the stars around them through their powerful gravitational pull and explosive ejections of energy.

"Over its lifetime, a black hole can release more energy than all the stars in a galaxy combined," said Roger Blandford, director of the Kavli Institute for Particle Astrophysics and Cosmology and a member of the U.S. National Academy of Science. "Black holes have a major impact on the formation of galaxies and the environmental growth and evolution of those galaxies."

Gravitational forces grow so strong close to a black hole that even light cannot escape from within, hence the difficulty in observing them directly. Scientists infer facts about black holes by their influence on the astronomical objects around them: the orbit of stars and clumps of detectable energy. With this information in hand, scientists create computer models to understand the data and to make predictions about the physics of distant regions of space. However, models are only as good as their assumptions.
"All tests of general relativity in the weak gravity field limit, like in our solar system, fall directly along the lines of what Einstein predicted," explained Jonathan McKinney, an assistant professor of physics at the University of Maryland at College Park. "But there is another regime—which has yet to be tested, and which is the hardest to test—that represents the strong gravitational field limit. And according to Einstein, gravity is strongest near black holes."

This makes black holes the ultimate experimental testing grounds for Einstein's theory of general relativity.

While black holes cannot be observed, they are typically accompanied by other objects with distinctive features that can be seen, including accretion disks, which are circling disks of superhot matter on our side of the black hole's "event horizon"; and relativistic jets, high-powered streams of ionized gases that shoot hundreds of thousands of light years across the sky.

In a paper published in Science in January 2013, McKinney, Tchekhovskoy and Blandford predicted the formation of accretion disks and relativistic jets that warp and bend more than previously thought, shaped both by the extreme gravity of the black hole and by powerful magnetic forces generated by its spin. Their highly detailed models of the black hole environment contribute new knowledge to the field.

For decades, a simplistic view of the accretion disks and polar jets reigned. It was widely believed that accretion disks sat like flat plates along the outer edges of black holes and that jets shot straight out perpendicularly. However, new 3D simulations performed on the powerful supercomputers of the National Science Foundation's Extreme Science and Engineering Discovery Environment (XSEDE) and NASA overturned this oversimplified view of jets and disks.

The simulations show that the jet is aligned with the black hole's spin near the black hole but that it gradually gets pushed by the disk material and becomes parallel to (but offset from) the disk's rotational axis at large distances. The interaction between the jet and disk leaves a warp in the accretion disk density.

"An important aspect that determines jet properties is the strength of the magnetic field threading the black hole," said Alexander Tchekhovskoy, a post-doctoral fellow at the Princeton Center for Theoretical Science. "While in previous works it was a free parameter, in our series of works the field is maximum: it is as strong as a black hole's gravity pull on the disk."

In the simulations, the twisting energy grows so strong that it actually powers the jet. In fact, the jet can reorient the accretion disk, rather than the other way around, as was thought previously.
"People had thought that the disk was the dominant aspect," McKinney said. "It was the dog and the jet was the wagging tail. But we found that the magnetic field builds up to become stronger than gravity, and then the jet becomes the dog and the disk becomes the wagging tail. Or, one can say the dog is chasing its own tail, because the disk and jet are quite balanced, with the disk following the jet — it's the inverse situation to what people thought."

What does this have to do with Einstein and his theory of general relativity?

Astronomers are closer than ever to being able to see the details of the jets and accretion disks around black holes. In a September 2012 paper in Science, Sheperd Doeleman of MIT reported the first images of the jet-launching structure near the supermassive black hole, M87, at the center of a neighboring galaxy, captured using the Event Horizon Telescope, a very long baseline interferometry (VLBI) array composed of four telescopes at three geographical locations. It constituted a small sliver of a vast skyscape, yet the results give astronomers like McKinney, Tchekhovskoy and Blandford the hope that they will get their first comprehensive glimpse into the black hole's neighborhood in the next three to five years.

"We'll see the gases swirl around the black hole and other optical effects that will be signatures of a black holes in spacetime that one can look out for," said Blandford.

The observations will either match models like theirs, or they will be different. Both outcomes will tell researchers a lot.

"If you don't have an accurate model and anything can happen as far as you understand, then you're not going to be able to make any constraints and prove one way or another whether Einstein was right," McKinney explained. "But if you have an accurate model using Einstein's equations, and you observe a black hole that is very different from what you expected, then you can begin to say that he may be wrong."

The model Blandford and others generated using supercomputing simulations will help serve that comparative role. But they need to add one crucial element to make the simulations meaningful: a way of translating the physics of the black hole system into a visual signal as it would be seen from the vantage point of our telescopes, billions of light years away.

"We're in the process of making our simulations shine, so they can be compared with observations," McKinney said, "not only to test our ideas of how these disks and jets work, but ultimately to test general relativity."
Supported by NASA, the Princeton Center for Theoretical Science and NSF Extreme Science and Engineering Discovery Environment (XSEDE).

Aaron Dubrow, Science and Technology Writer
February 13, 2013
The Texas Advanced Computing Center (TACC) at The University of Texas at Austin is one of the leading centers of computational excellence in the United States. The center's mission is to enable discoveries that advance science and society through the application of advanced computing technologies. To fulfill this mission, TACC identifies, evaluates, deploys, and supports powerful computing, visualization, and storage systems and software. TACC's staff experts help researchers and educators use these technologies effectively, and conduct research and development to make these technologies more powerful, more reliable, and easier to use. TACC staff also help encourage, educate, and train the next generation of researchers, empowering them to make discoveries that change the world.

Aaron Dubrow | EurekAlert!
Further information:
http://www.tacc.utexas.edu
http://www.tacc.utexas.edu/news/feature-stories/2012/journey-to-the-limits-of-spacetime

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>