Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

JILA Frequency Comb System Detects Gas Impurities to Aid Semiconductor Manufacturing

05.08.2010
Purity of ingredients is a constant concern for the semiconductor industry, because a mere trace of contaminants can damage or ruin tiny devices. In a step toward solving a long-standing problem in semiconductor manufacturing, scientists at JILA and collaborators have used their unique version of a “fine-toothed comb” to detect minute traces of contaminant molecules in the arsine gas used to make a variety of photonics devices.

JILA is a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder (CU). The research was conducted with collaborators from NIST’s Boulder campus and Matheson Tri-Gas (Longmont, Colo.).

The research, described in a new paper,* used a NIST/CU invention called cavity-enhanced direct frequency comb spectroscopy (CE-DFCS).** It consists of an optical frequency comb—a tool for accurately generating different colors, or frequencies, of light—adapted to analyze the quantity, structure and dynamics of various atoms and molecules simultaneously. The technique offers a unique combination of speed, sensitivity, specificity and broad frequency coverage.

The semiconductor industry has long struggled to find traces of water and other impurities in arsine gas used in manufacturing of III-V semiconductors for light-emitting diodes (LEDs), solar-energy cells and laser diodes for DVD players. The contaminants can alter a semiconductor’s electrical and optical properties. For instance, water vapor can add oxygen to the material, reducing device brightness and reliability. Traces of water are hard to identify in arsine, which absorbs light in a complex, congested pattern across a broad frequency range. Most analytical techniques have significant drawbacks, such as large and complex equipment or a narrow frequency range.

The JILA comb system, previously demonstrated as a “breathalyzer” for detecting disease***, was upgraded recently to access longer wavelengths of light, where water strongly absorbs and arsine does not, to better identify the water. The new paper describes the first demonstration of the comb system in an industrial application.

In the JILA experiments, arsine gas was placed in an optical cavity where it was “combed” by light pulses. The atoms and molecules inside the cavity absorbed some light energy at frequencies where they switch energy levels, vibrate or rotate. The comb’s “teeth” were used to precisely measure the intensity of different shades of infrared light before and after the interactions. By detecting which colors were absorbed and in what amounts—matched against a catalog of known absorption signatures for different atoms and molecules—the researchers could measure water concentration to very low levels.

Just 10 water molecules per billion molecules of arsine can cause semiconductor defects. The researchers detected water at levels of 7 molecules per billion in nitrogen gas, and at 31 molecules per billion in arsine. The researchers are now working on extending the comb system even further into the infrared and aiming for parts-per-trillion sensitivity.

The research was funded by the Air Force Office of Scientific Research, Defense Advanced Research Projects Agency, Defense Threat Reduction Agency, Agilent Technologies, and NIST.

* K.C. Cossel, F. Adler, K.A. Bertness, M.J. Thorpe, J. Feng, M.W. Raynor, J. Ye. 2010. Analysis of Trace Impurities in Semiconductor Gas via Cavity-Enhanced Direct Frequency Comb Spectroscopy. Applied Physics B. Published online July 20.

** U.S. Patent number 7,538,881: Sensitive, Massively Parallel, Broad-Bandwidth, Real-Time Spectroscopy, issued in May 2009, NIST docket number 06-004, CU Technology Transfer case number CU1541B. Licensing rights have been consolidated in CU.

*** See “Optical ‘Frequency Comb’ Can Detect the Breath of Disease”, in NIST Tech Beat Feb 19, 2008, at www.nist.gov/public_affairs/techbeat/tb2008_0219.htm#comb.

Laura Ost | Newswise Science News
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht MEMS chips get metatlenses
21.02.2018 | American Institute of Physics

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>