Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

JILA Frequency Comb System Detects Gas Impurities to Aid Semiconductor Manufacturing

05.08.2010
Purity of ingredients is a constant concern for the semiconductor industry, because a mere trace of contaminants can damage or ruin tiny devices. In a step toward solving a long-standing problem in semiconductor manufacturing, scientists at JILA and collaborators have used their unique version of a “fine-toothed comb” to detect minute traces of contaminant molecules in the arsine gas used to make a variety of photonics devices.

JILA is a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder (CU). The research was conducted with collaborators from NIST’s Boulder campus and Matheson Tri-Gas (Longmont, Colo.).

The research, described in a new paper,* used a NIST/CU invention called cavity-enhanced direct frequency comb spectroscopy (CE-DFCS).** It consists of an optical frequency comb—a tool for accurately generating different colors, or frequencies, of light—adapted to analyze the quantity, structure and dynamics of various atoms and molecules simultaneously. The technique offers a unique combination of speed, sensitivity, specificity and broad frequency coverage.

The semiconductor industry has long struggled to find traces of water and other impurities in arsine gas used in manufacturing of III-V semiconductors for light-emitting diodes (LEDs), solar-energy cells and laser diodes for DVD players. The contaminants can alter a semiconductor’s electrical and optical properties. For instance, water vapor can add oxygen to the material, reducing device brightness and reliability. Traces of water are hard to identify in arsine, which absorbs light in a complex, congested pattern across a broad frequency range. Most analytical techniques have significant drawbacks, such as large and complex equipment or a narrow frequency range.

The JILA comb system, previously demonstrated as a “breathalyzer” for detecting disease***, was upgraded recently to access longer wavelengths of light, where water strongly absorbs and arsine does not, to better identify the water. The new paper describes the first demonstration of the comb system in an industrial application.

In the JILA experiments, arsine gas was placed in an optical cavity where it was “combed” by light pulses. The atoms and molecules inside the cavity absorbed some light energy at frequencies where they switch energy levels, vibrate or rotate. The comb’s “teeth” were used to precisely measure the intensity of different shades of infrared light before and after the interactions. By detecting which colors were absorbed and in what amounts—matched against a catalog of known absorption signatures for different atoms and molecules—the researchers could measure water concentration to very low levels.

Just 10 water molecules per billion molecules of arsine can cause semiconductor defects. The researchers detected water at levels of 7 molecules per billion in nitrogen gas, and at 31 molecules per billion in arsine. The researchers are now working on extending the comb system even further into the infrared and aiming for parts-per-trillion sensitivity.

The research was funded by the Air Force Office of Scientific Research, Defense Advanced Research Projects Agency, Defense Threat Reduction Agency, Agilent Technologies, and NIST.

* K.C. Cossel, F. Adler, K.A. Bertness, M.J. Thorpe, J. Feng, M.W. Raynor, J. Ye. 2010. Analysis of Trace Impurities in Semiconductor Gas via Cavity-Enhanced Direct Frequency Comb Spectroscopy. Applied Physics B. Published online July 20.

** U.S. Patent number 7,538,881: Sensitive, Massively Parallel, Broad-Bandwidth, Real-Time Spectroscopy, issued in May 2009, NIST docket number 06-004, CU Technology Transfer case number CU1541B. Licensing rights have been consolidated in CU.

*** See “Optical ‘Frequency Comb’ Can Detect the Breath of Disease”, in NIST Tech Beat Feb 19, 2008, at www.nist.gov/public_affairs/techbeat/tb2008_0219.htm#comb.

Laura Ost | Newswise Science News
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>