Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jets on Saturn's moon Enceladus not geysers from underground ocean

25.06.2009
Water vapor jets that spew from the surface of Saturn's icy moon Enceladus are not really geysers from an underground ocean as initially envisioned by planetary scientists, according to a study led by the University of Colorado at Boulder.

First observed following a close flyby by NASA's Cassini spacecraft in July 2005, the jets were found to consist of both water vapor and icy particles, said Professor Nicholas Schneider of CU-Boulder's Laboratory for Atmospheric and Space Physics. The jets inspired speculation by planetary scientists that they were geysers -- violent explosions of water out of a vent caused by expanding bubbles of water vapor emanating from an ocean beneath the icy crust of Enceladus.


Water vapor jets spewing from Saturn\'s icy moon, Enceladus, are not the result of geysers from an underground ocean as envisioned by some planetary scientists but may be caused by water evaporation or ice vaporization, according to a new University of Colorado at Boulder study. Credit: Image courtesy NASA/JPL/Space Science Institute

Scientists hypothesized that if such an ocean did exist, it might provide a suitable environment for primitive life forms, said Schneider, who led the study. "We wondered if there was an ocean underneath that crust and wondered if it is just spraying out through cracks like a geyser boiling away into space," he said.

To test the theory, Schneider and his colleagues performed experiments to find the relative content of sodium in the water vapor component of the jets. If the jets were geysers originating from an underground ocean, then the sodium content in the water vapor should be high. Schneider said such sodium should give off the same yellow light that comes off street lights, and that the world's best telescopes can detect even a small number of sodium atoms orbiting Saturn.

Observations by Schneider's team using the 10-meter Keck 1 telescope and the 4-meter Anglo-Australian telescope, however, demonstrated that few if any sodium atoms existed in the water vapor. "It would have been very exciting to support the geyser hypothesis. But it is not what Mother Nature is telling us," said Schneider.

The study was published in the June 25 issue of Nature along with a companion study by other researchers that analyzed the icy grains that also make up the expelled jets. The companion study concluded there was at least some salt in the particles in the plume, suggesting the particles may have come from an ocean.

"Since our observing team did not find salt in the vapor, our conclusions speak to the conditions of a possible underground ocean on Enceladus," Schneider said.

One suggested explanation for the contrasting results from the two studies is that deep caverns may exist where water evaporates slowly, said Schneider. When the evaporation process is slow the vapor contains little sodium, just like water evaporating from the ocean. The vapor turns into a jet because it leaks out of small cracks in the crust into the vacuum of space.

"Only if the evaporation is more explosive would it contain more salt," said Schneider. "This idea of slow evaporation from a deep cavernous ocean is not the dramatic idea that we imagined before, but it is possible given both our results so far."

But Schneider also cautions that several other explanations for the jets are equally plausible. "It could still be warm ice vaporizing away into space. It could even be places where the crust rubs against itself from tidal motions and the friction creates liquid water that would then evaporate into space," he said.

"These are all hypotheses but we can't verify any one with the results so far," said Schneider. "We have to take them all with, well, a grain of salt."

The project has been funded by the National Science Foundation and has been carried out in collaboration with scientists from the University of Maryland and the Institute for Astronomy in Honolulu.

Nick Shneider | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>