Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Japanese scientists use alcoholic drinks to induce superconductivity

07.03.2011
Japanese researchers have been immersing iron-based compounds in hot alcoholic beverages such as red wine, sake and shochu to induce superconductivity.

Scientists from the National Institute for Materials Science, Japan, found that immersing pellets of an iron-based compound in heated alcoholic beverages for 24 hours greatly increase their superconducting ability.

Iron-based compounds usually become superconductive after being exposed to air. This process however can take up to several months. This study demonstrated that superconductivity can be induced in just one day.

Due to the variety of technological applications of superconducting materials, there has been a scramble for substances that may induce and enhance superconductivity in iron-based compounds.

The alcoholic beverages used were red and white wine, beer, Japanese sake, shochu, and whisky. Samples of the iron-based compound were immersed in each beverage, heated at 70oC for 24 hours, and then analysed.

Red wine was shown to induce the best superconducting properties; however beverages with the same alcohol concentration showed a significant difference. This suggests that it may not be the alcohol contributing to the creation of superconductivity but instead another component present in the beverages.

Iron-based compounds undergo a process called magnetic order whereby the molecules align in a regular pattern. To achieve superconductivity, magnetic order must be suppressed. In order to become superconductive, the elements in the iron-based compounds must be substituted with elements present in alcohol.

The exact mechanism behind this effect is largely unknown however the researchers suggest that it may be due to the insertion of electrically charged particles into the layers of the compound.

An alternative theory is that the alcoholic beverages help to supply oxygen into the sample, which in turn causes superconductivity. A clearer understanding will be had by analysing the structure and composition of the beverages to identify the key factor in inducing superconductivity.

Professor Yoshihiko Takano, Nano Frontier Materials Group at the National Institute for Materials Science, Japan, said, "The iron compound becomes superconductive by air exposure but the sample needs to be exposed to air for a few months to show superconductivity. This is a very, very long time.

"However, the sample immersed in the red wine becomes superconductive only in one day, much faster than air-exposure."

From Monday, 7 March, the journal paper can be found at http://iopscience.iop.org/0953-2048/24/5/055008.

Joe Winters | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>