Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Japanese scientists use alcoholic drinks to induce superconductivity

07.03.2011
Japanese researchers have been immersing iron-based compounds in hot alcoholic beverages such as red wine, sake and shochu to induce superconductivity.

Scientists from the National Institute for Materials Science, Japan, found that immersing pellets of an iron-based compound in heated alcoholic beverages for 24 hours greatly increase their superconducting ability.

Iron-based compounds usually become superconductive after being exposed to air. This process however can take up to several months. This study demonstrated that superconductivity can be induced in just one day.

Due to the variety of technological applications of superconducting materials, there has been a scramble for substances that may induce and enhance superconductivity in iron-based compounds.

The alcoholic beverages used were red and white wine, beer, Japanese sake, shochu, and whisky. Samples of the iron-based compound were immersed in each beverage, heated at 70oC for 24 hours, and then analysed.

Red wine was shown to induce the best superconducting properties; however beverages with the same alcohol concentration showed a significant difference. This suggests that it may not be the alcohol contributing to the creation of superconductivity but instead another component present in the beverages.

Iron-based compounds undergo a process called magnetic order whereby the molecules align in a regular pattern. To achieve superconductivity, magnetic order must be suppressed. In order to become superconductive, the elements in the iron-based compounds must be substituted with elements present in alcohol.

The exact mechanism behind this effect is largely unknown however the researchers suggest that it may be due to the insertion of electrically charged particles into the layers of the compound.

An alternative theory is that the alcoholic beverages help to supply oxygen into the sample, which in turn causes superconductivity. A clearer understanding will be had by analysing the structure and composition of the beverages to identify the key factor in inducing superconductivity.

Professor Yoshihiko Takano, Nano Frontier Materials Group at the National Institute for Materials Science, Japan, said, "The iron compound becomes superconductive by air exposure but the sample needs to be exposed to air for a few months to show superconductivity. This is a very, very long time.

"However, the sample immersed in the red wine becomes superconductive only in one day, much faster than air-exposure."

From Monday, 7 March, the journal paper can be found at http://iopscience.iop.org/0953-2048/24/5/055008.

Joe Winters | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Major discovery in controlling quantum states of single atoms
20.02.2018 | Institute for Basic Science

nachricht Observing and controlling ultrafast processes with attosecond resolution
20.02.2018 | Technische Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>