Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


It's go time for LUX-Zeplin dark matter experiment


From the physics labs at Yale University to the bottom of a played-out gold mine in South Dakota, a new generation of dark matter experiments is ready to commence.

The U.S. Department of Energy's Office of Science and the National Science Foundation recently gave the go-ahead to LUX-Zeplin (LZ), a key experiment in the hunt for dark matter, the invisible substance that may make up much of the universe. Daniel McKinsey, a professor of physics, leads a contingent of Yale scientists working on the project.

"We emerged from a very intense competition," said McKinsey, whose ongoing LUX (Large Underground Xenon) experiment looks for dark matter with a liquid xenon detector placed 4,850 feet below the Earth's surface. The device resides at the Sanford Underground Research Facility, in South Dakota's Black Hills.

The new, LZ device will boost the size and effectiveness of the original LUX technology.

"We have the most sensitive detector in the world, with LUX," McKinsey said. "LZ will be hundreds of times more sensitive. It's gratifying to see that our approach is being validated."

LZ is an international effort, involving scientists from 29 institutions in the United States, Portugal, Russia, and the United Kingdom. The DOE's Lawrence Berkeley National Lab manages the experiment.

Dark matter is a scientific placeholder, of sorts. Although it can't be seen or felt, its existence is thought to explain a number of important behaviors of the universe, including the structural integrity of galaxies.

LZ's approach posits that dark matter may be composed of Weakly Interacting Massive Particles – known as WIMPs – which pass through ordinary matter virtually undetected. The experiment aims to spot these particles as they move through a container of dense, liquid xenon. That container will be surrounded by a tank of water, along with an array of sophisticated light sensors and other systems.

Putting the device down a mineshaft weeds out cosmic rays, McKinsey said. Gamma rays and neutrinos, however, still will be able to seep into the device. They'll be like tiny bowling balls, careening into the liquid xenon and colliding with electrons. Those collisions will be identified and factored out.

The researchers hope that the remaining collisions, the ones involving nuclei, will identify the presence of dark matter. "It comes down to distinguishing between electron and nuclear recoils," McKinsey said.

LZ will be a meter taller and significantly wider than its predecessor. The amount of xenon will jump from 250 kilograms to 7,000 kilograms. Such considerations become critical when you're conducting research in a mine, according to McKinsey.

"Everything has to come down in the same cage," he said.

As with LUX, a number of systems and components for LZ will be designed and built at Yale. For example, McKinsey said, team members in New Haven will work on calibration systems. They also will construct a system for bringing high voltage into the device's lower grid.

The goal is to have LZ operational in 2017, while continuing work with the LUX experiment.

"We want to get moving soon," McKinsey said. "We have new systems we want to start testing. Our activity has begun."

Two other dark matter initiatives also earned support. Those are the SuperCDMS-SNOLAB, which will look for WIMPs, and ADMX-Gen2, which will search for axion particles.

Jim Shelton | Eurek Alert!

Further reports about: McKinsey WIMPs activity collisions dark matter particles sensitive structural voltage xenon

More articles from Physics and Astronomy:

nachricht Stellar desk in wave-like motion
08.10.2015 | Max Planck Institute for Astronomy, Heidelberg

nachricht Mysterious ripples found racing through planet-forming disk
08.10.2015 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Navigating the unknown

09.10.2015 | Information Technology

New Artificial Cells Mimic Nature’s Tiny Reactors

09.10.2015 | Materials Sciences

Chimpanzees Shed Light on Origins of Human Walking

09.10.2015 | Life Sciences

More VideoLinks >>>