Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Isotope Near 'Doubly Magic' Tin-100 Flouts Conventional Wisdom

25.10.2010
Tin may seem like the most unassuming of elements, but experiments performed at the Department of Energy's Oak Ridge National Laboratory are yielding surprising properties in extremely short-lived isotopes near tin-100's "doubly magic" nucleus.

Experiments performed with the exotic nucleus tin-101, which has a single neutron orbiting tin-100's closed shell of 50 protons and 50 neutrons, indicate an unexpected reversal in the ordering of lowest states in the nucleus.

The finding appears to violate a standard scenario offered by the nuclear shell model that has been the cornerstone for understanding the atomic nucleus for more than half a century.

The international team of experimentalists and theorists was led by Iain G. Darby of the University of Tennessee (UT), who is now in Belgium, and Robert Grzywacz, a physics professor at UT and a former Wigner Fellow at ORNL. The experiment, performed at ORNL's Holifield Radioactive Ion Beam Facility, found that the ground states of orbiting neutrons unexpectedly swap when three neutrons are added to the closed-shell tin-100 nucleus.

"In fact, previously the ground state of tin-101 was assumed to be identical to that of tin-103, tin-105, and tin-107. Those conform to the standard picture. But we've found that tin-101 has a flipped ground state," Grzywacz said.

The researchers theorize that the swapping of ground-state spins between tin-101 and tin-103 is due to the neutrons' unusually strong orbital dependence of the pairing interaction and the relatively small difference between orbital energy states in tin-101.

"Neutrons tend to dance in pairs, much like Cooper pairs of electrons in superconductors. But because their angular momentum adds to zero, the pairing shouldn't affect the spin of the nucleus if only few neutrons are involved" said ORNL and UT researcher Witold Nazarewicz.

Grzywacz and Nazarewicz explained that, in the standard shell model, the neutron pairing energy weakly depends on the particle’s state. "But it so happens that pairing interaction is different in those two orbits, one with higher energy and one lower. It is orbital dependent," said Nazarewicz, who is scientific director at the Holifield Facility. "With tin-101, those properties are governed by one neutron. If you add two more neutrons, the ground state is determined by the neutron superconductivity, which is very unusual. ”

"In practice, the final picture is the two neutrons pair strongly and kick out the third--odd--neutron in tin-103 into another orbit," said Grzywacz. "Three's a crowd."

The experiment required the unique radioactive ion beam capabilities of the Holifield Facility at ORNL, plus digital signal processing instrumentation developed at ORNL to measure the extremely fast alpha particle decays in the neutron-deficient and very unstable tin isotopes. Tin-101 was made in the decay of the extremely short-lived, lightest-known alpha emitter tellurium-105, which was previously discovered by the ORNL-UT team.

The theoretical calculations, based on parameter-free, state-of-the-art nuclear models, were performed in Oslo, Norway, and in Oak Ridge, Tenn.

"We were developing these experimental methods for almost a decade and, combined with advances in computational methods and access to supercomputers such as Jaguar and Kraken at ORNL, they are now bearing fruit," said Grzywacz.

The results of the research, which was funded in part by DOE's Office of Nuclear Physics, have been accepted for publication in Physical Review Letters.

ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science.

Bill Cabage | Newswise Science News
Further information:
http://www.ornl.gov

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>