Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Isotope near 'doubly magic' tin-100 flouts conventional wisdom

22.10.2010
Tin may seem like the most unassuming of elements, but experiments performed at the Department of Energy's Oak Ridge National Laboratory are yielding surprising properties in extremely short-lived isotopes near tin-100's "doubly magic" nucleus.

Experiments performed with the exotic nucleus tin-101, which has a single neutron orbiting tin-100's closed shell of 50 protons and 50 neutrons, indicate an unexpected reversal in the ordering of lowest states in the nucleus. The finding appears to violate a standard scenario offered by the nuclear shell model that has been the cornerstone for understanding the atomic nucleus for more than half a century.

The international team of experimentalists and theorists was led by Iain G. Darby of the University of Tennessee (UT), who is now in Belgium, and Robert Grzywacz, a physics professor at UT and a former Wigner Fellow at ORNL. The experiment, performed at ORNL's Holifield Radioactive Ion Beam Facility, found that the ground states of orbiting neutrons unexpectedly swap when three neutrons are added to the closed-shell tin-100 nucleus.

"In fact, previously the ground state of tin-101 was assumed to be identical to that of tin-103, tin-105, and tin-107. Those conform to the standard picture. But we've found that tin-101 has a flipped ground state," Grzywacz said.

The researchers theorize that the swapping of ground-state spins between tin-101 and tin-103 is due to the neutrons' unusually strong orbital dependence of the pairing interaction and the relatively small difference between orbital energy states in tin-101.

"Neutrons tend to dance in pairs, much like Cooper pairs of electrons in superconductors. But because their angular momentum adds to zero, the pairing shouldn't affect the spin of the nucleus if only few neutrons are involved" said ORNL and UT researcher Witold Nazarewicz.

Grzywacz and Nazarewicz explained that, in the standard shell model, the neutron pairing energy weakly depends on the particle's state. "But it so happens that pairing interaction is different in those two orbits, one with higher energy and one lower. It is orbital dependent," said Nazarewicz, who is scientific director at the Holifield Facility. "With tin-101, those properties are governed by one neutron. If you add two more neutrons, the ground state is determined by the neutron superconductivity, which is very unusual. "

"In practice, the final picture is the two neutrons pair strongly and kick out the third--odd--neutron in tin-103 into another orbit," said Grzywacz. "Three's a crowd."

The experiment required the unique radioactive ion beam capabilities of the Holifield Facility at ORNL, plus digital signal processing instrumentation developed at ORNL to measure the extremely fast alpha particle decays in the neutron-deficient and very unstable tin isotopes. Tin-101 was made in the decay of the extremely short-lived, lightest-known alpha emitter tellurium-105, which was previously discovered by the ORNL-UT team.

The theoretical calculations, based on parameter-free, state-of-the-art nuclear models, were performed in Oslo, Norway, and in Oak Ridge, Tenn.

"We were developing these experimental methods for almost a decade and, combined with advances in computational methods and access to supercomputers such as Jaguar and Kraken at ORNL, they are now bearing fruit," said Grzywacz.

The results of the research, which was funded in part by DOE's Office of Nuclear Physics, have been accepted for publication in Physical Review Letters.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter - http://twitter.com/oakridgelabnews

RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml

Flickr - http://www.flickr.com/photos/oakridgelab

YouTube - http://www.youtube.com/user/OakRidgeNationalLab

LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory

Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

Bill Cabage | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Physics and Astronomy:

nachricht The moon is front and center during a total solar eclipse
24.07.2017 | NASA/Goddard Space Flight Center

nachricht Superluminous supernova marks the death of a star at cosmic high noon
24.07.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>