Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Isotope near 'doubly magic' tin-100 flouts conventional wisdom

22.10.2010
Tin may seem like the most unassuming of elements, but experiments performed at the Department of Energy's Oak Ridge National Laboratory are yielding surprising properties in extremely short-lived isotopes near tin-100's "doubly magic" nucleus.

Experiments performed with the exotic nucleus tin-101, which has a single neutron orbiting tin-100's closed shell of 50 protons and 50 neutrons, indicate an unexpected reversal in the ordering of lowest states in the nucleus. The finding appears to violate a standard scenario offered by the nuclear shell model that has been the cornerstone for understanding the atomic nucleus for more than half a century.

The international team of experimentalists and theorists was led by Iain G. Darby of the University of Tennessee (UT), who is now in Belgium, and Robert Grzywacz, a physics professor at UT and a former Wigner Fellow at ORNL. The experiment, performed at ORNL's Holifield Radioactive Ion Beam Facility, found that the ground states of orbiting neutrons unexpectedly swap when three neutrons are added to the closed-shell tin-100 nucleus.

"In fact, previously the ground state of tin-101 was assumed to be identical to that of tin-103, tin-105, and tin-107. Those conform to the standard picture. But we've found that tin-101 has a flipped ground state," Grzywacz said.

The researchers theorize that the swapping of ground-state spins between tin-101 and tin-103 is due to the neutrons' unusually strong orbital dependence of the pairing interaction and the relatively small difference between orbital energy states in tin-101.

"Neutrons tend to dance in pairs, much like Cooper pairs of electrons in superconductors. But because their angular momentum adds to zero, the pairing shouldn't affect the spin of the nucleus if only few neutrons are involved" said ORNL and UT researcher Witold Nazarewicz.

Grzywacz and Nazarewicz explained that, in the standard shell model, the neutron pairing energy weakly depends on the particle's state. "But it so happens that pairing interaction is different in those two orbits, one with higher energy and one lower. It is orbital dependent," said Nazarewicz, who is scientific director at the Holifield Facility. "With tin-101, those properties are governed by one neutron. If you add two more neutrons, the ground state is determined by the neutron superconductivity, which is very unusual. "

"In practice, the final picture is the two neutrons pair strongly and kick out the third--odd--neutron in tin-103 into another orbit," said Grzywacz. "Three's a crowd."

The experiment required the unique radioactive ion beam capabilities of the Holifield Facility at ORNL, plus digital signal processing instrumentation developed at ORNL to measure the extremely fast alpha particle decays in the neutron-deficient and very unstable tin isotopes. Tin-101 was made in the decay of the extremely short-lived, lightest-known alpha emitter tellurium-105, which was previously discovered by the ORNL-UT team.

The theoretical calculations, based on parameter-free, state-of-the-art nuclear models, were performed in Oslo, Norway, and in Oak Ridge, Tenn.

"We were developing these experimental methods for almost a decade and, combined with advances in computational methods and access to supercomputers such as Jaguar and Kraken at ORNL, they are now bearing fruit," said Grzywacz.

The results of the research, which was funded in part by DOE's Office of Nuclear Physics, have been accepted for publication in Physical Review Letters.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter - http://twitter.com/oakridgelabnews

RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml

Flickr - http://www.flickr.com/photos/oakridgelab

YouTube - http://www.youtube.com/user/OakRidgeNationalLab

LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory

Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

Bill Cabage | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>