Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ISON stops producing dust

02.12.2013
On current images, the comet is gradually getting dimmer

On Thursday evening, at the time of its closest approach to the sun, comet ISON still had an active nucleus which was spewing gas and dust. About two hours after the Perihelion passage, however, there were no longer indications for any output.


The remains of ISON: On this image taken by satellite Soho, a tail-like structure is moving away from the sun. But now the comet is fading.

© ESA / NASA / SOHO

This is the assessment made by scientists at the Max Planck Institute for Solar System Research in Katlenburg- Lindau on Saturday. They analysed actual pictures of the instrument LASCO which enjoys a unique view of the comet from its vantage point on board of the Solar Observatory SOHO.

On current photographs, the brightness of the apparently inactive comet is gradually decreasing. It is almost certain that there won't be a spectacular comet display after all.

Against 8:30 p.m. yesterday evening, the tail of ISON emerged from behind sun in the field of view of the LASCO instrument. At this point in time, however, it was unclear whether the tip of the tail concealed a nucleus or not. Pictures taken a few hours after Perhelion now allow further conclusions to be drawn.

"The dust tail of the comet is now divided into two parts," explains Hermann Böhnhardt from the Max Planck Institute for Solar System Research. According to Böhnhardt, the part of the tail that is pointing towards the sun consists of dust particles, which were released significantly before the comet's Perihelion passage – i.e. prior to reaching the closest point to the sun.

The other part, however, appears to contain more recent material: It was released when ISON passed the sun and suggests that at least part of the nucleus still existed and was active at that time.

The Max Planck researchers base their assessment on computer simulations in which they model the shape of the dust tail. "If we assume in our calculations that the comet has emitted dust at Perihelion, we can reproduce the current images quite well," says Böhnhardt.

The LASCO images from Saturday showed the ISON stopped producing dust two hours after Perhelion. Whether the comet nucleus was still intact at Perihelion or continued its flight as a small fragment or as collection of chunks is not yet clear.

The instrument Sumer on board of the satellite SOHO, which was developed and built under the auspices of the Max Planck Institute in Lindau observed ISON on Thursday night in the hour when it directly approached the sun. The instrument divides the light that is sent into space by the celestial body into its individual components. From this, researchers can draw conclusions about the elements and molecules in the comet's dust cloud.

"Our measurements show a clear signal of the comet during its flight past the sun," says Max Planck scientist Werner Curdt. Exact results of the measurement, however, are not yet available.

Contact

Dr. Birgit Krummheuer
Press and Public Relations
Max Planck Institute for Solar System Research, Katlenburg-Lindau
Phone: +49 5556 979-462
Fax: +49 5556 979-240
Email:Krummheuer@mps.mpg.de
Dr. Hermann Böhnhardt
Max Planck Institute for Solar System Research, Katlenburg-Lindau
Phone: +49 5556 979-545
Dr. Werner Curdt
Max Planck Institute for Solar System Research, Katlenburg-Lindau
Phone: +49 5556 979-420
Email:Curdt@mps.mpg.de

Dr. Birgit Krummheuer | Max-Planck-Institute
Further information:
http://www.mpg.de/7621979/winged-comet

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>