Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ISON stops producing dust

02.12.2013
On current images, the comet is gradually getting dimmer

On Thursday evening, at the time of its closest approach to the sun, comet ISON still had an active nucleus which was spewing gas and dust. About two hours after the Perihelion passage, however, there were no longer indications for any output.


The remains of ISON: On this image taken by satellite Soho, a tail-like structure is moving away from the sun. But now the comet is fading.

© ESA / NASA / SOHO

This is the assessment made by scientists at the Max Planck Institute for Solar System Research in Katlenburg- Lindau on Saturday. They analysed actual pictures of the instrument LASCO which enjoys a unique view of the comet from its vantage point on board of the Solar Observatory SOHO.

On current photographs, the brightness of the apparently inactive comet is gradually decreasing. It is almost certain that there won't be a spectacular comet display after all.

Against 8:30 p.m. yesterday evening, the tail of ISON emerged from behind sun in the field of view of the LASCO instrument. At this point in time, however, it was unclear whether the tip of the tail concealed a nucleus or not. Pictures taken a few hours after Perhelion now allow further conclusions to be drawn.

"The dust tail of the comet is now divided into two parts," explains Hermann Böhnhardt from the Max Planck Institute for Solar System Research. According to Böhnhardt, the part of the tail that is pointing towards the sun consists of dust particles, which were released significantly before the comet's Perihelion passage – i.e. prior to reaching the closest point to the sun.

The other part, however, appears to contain more recent material: It was released when ISON passed the sun and suggests that at least part of the nucleus still existed and was active at that time.

The Max Planck researchers base their assessment on computer simulations in which they model the shape of the dust tail. "If we assume in our calculations that the comet has emitted dust at Perihelion, we can reproduce the current images quite well," says Böhnhardt.

The LASCO images from Saturday showed the ISON stopped producing dust two hours after Perhelion. Whether the comet nucleus was still intact at Perihelion or continued its flight as a small fragment or as collection of chunks is not yet clear.

The instrument Sumer on board of the satellite SOHO, which was developed and built under the auspices of the Max Planck Institute in Lindau observed ISON on Thursday night in the hour when it directly approached the sun. The instrument divides the light that is sent into space by the celestial body into its individual components. From this, researchers can draw conclusions about the elements and molecules in the comet's dust cloud.

"Our measurements show a clear signal of the comet during its flight past the sun," says Max Planck scientist Werner Curdt. Exact results of the measurement, however, are not yet available.

Contact

Dr. Birgit Krummheuer
Press and Public Relations
Max Planck Institute for Solar System Research, Katlenburg-Lindau
Phone: +49 5556 979-462
Fax: +49 5556 979-240
Email:Krummheuer@mps.mpg.de
Dr. Hermann Böhnhardt
Max Planck Institute for Solar System Research, Katlenburg-Lindau
Phone: +49 5556 979-545
Dr. Werner Curdt
Max Planck Institute for Solar System Research, Katlenburg-Lindau
Phone: +49 5556 979-420
Email:Curdt@mps.mpg.de

Dr. Birgit Krummheuer | Max-Planck-Institute
Further information:
http://www.mpg.de/7621979/winged-comet

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>