Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ISON stops producing dust

02.12.2013
On current images, the comet is gradually getting dimmer

On Thursday evening, at the time of its closest approach to the sun, comet ISON still had an active nucleus which was spewing gas and dust. About two hours after the Perihelion passage, however, there were no longer indications for any output.


The remains of ISON: On this image taken by satellite Soho, a tail-like structure is moving away from the sun. But now the comet is fading.

© ESA / NASA / SOHO

This is the assessment made by scientists at the Max Planck Institute for Solar System Research in Katlenburg- Lindau on Saturday. They analysed actual pictures of the instrument LASCO which enjoys a unique view of the comet from its vantage point on board of the Solar Observatory SOHO.

On current photographs, the brightness of the apparently inactive comet is gradually decreasing. It is almost certain that there won't be a spectacular comet display after all.

Against 8:30 p.m. yesterday evening, the tail of ISON emerged from behind sun in the field of view of the LASCO instrument. At this point in time, however, it was unclear whether the tip of the tail concealed a nucleus or not. Pictures taken a few hours after Perhelion now allow further conclusions to be drawn.

"The dust tail of the comet is now divided into two parts," explains Hermann Böhnhardt from the Max Planck Institute for Solar System Research. According to Böhnhardt, the part of the tail that is pointing towards the sun consists of dust particles, which were released significantly before the comet's Perihelion passage – i.e. prior to reaching the closest point to the sun.

The other part, however, appears to contain more recent material: It was released when ISON passed the sun and suggests that at least part of the nucleus still existed and was active at that time.

The Max Planck researchers base their assessment on computer simulations in which they model the shape of the dust tail. "If we assume in our calculations that the comet has emitted dust at Perihelion, we can reproduce the current images quite well," says Böhnhardt.

The LASCO images from Saturday showed the ISON stopped producing dust two hours after Perhelion. Whether the comet nucleus was still intact at Perihelion or continued its flight as a small fragment or as collection of chunks is not yet clear.

The instrument Sumer on board of the satellite SOHO, which was developed and built under the auspices of the Max Planck Institute in Lindau observed ISON on Thursday night in the hour when it directly approached the sun. The instrument divides the light that is sent into space by the celestial body into its individual components. From this, researchers can draw conclusions about the elements and molecules in the comet's dust cloud.

"Our measurements show a clear signal of the comet during its flight past the sun," says Max Planck scientist Werner Curdt. Exact results of the measurement, however, are not yet available.

Contact

Dr. Birgit Krummheuer
Press and Public Relations
Max Planck Institute for Solar System Research, Katlenburg-Lindau
Phone: +49 5556 979-462
Fax: +49 5556 979-240
Email:Krummheuer@mps.mpg.de
Dr. Hermann Böhnhardt
Max Planck Institute for Solar System Research, Katlenburg-Lindau
Phone: +49 5556 979-545
Dr. Werner Curdt
Max Planck Institute for Solar System Research, Katlenburg-Lindau
Phone: +49 5556 979-420
Email:Curdt@mps.mpg.de

Dr. Birgit Krummheuer | Max-Planck-Institute
Further information:
http://www.mpg.de/7621979/winged-comet

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections

25.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>