Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Iron Sun' Is Not a Rock Band, but a Key to How Stars Transmit Energy

08.01.2015

Working at temperatures matching the interior of the sun, researchers at Sandia National Laboratories’ Z machine have been able to determine experimentally, for the first time, iron’s role in inhibiting energy transmission from the center of the sun to near the edge of its radiative band — the section of the solar interior between the sun’s core and outer convection zone.

Because that role is much greater than formerly surmised, the new, experimentally derived amount of iron’s opacity — essentially, its capacity for hindering the transport of radiative energy originating in nuclear fusion reactions deep in the sun’s interior — helps close a theoretical gap in the Standard Solar Model, widely used by astrophysicists as a foundation to model the behavior of stars.


THE SUN NEVER LOOKED SO CLOSE Physicist Jim Bailey of Sandia National Laboratories observes a wire array that will heat foam to roughly 4 million degrees until it emits a burst of X-rays that heats a foil target to the interior conditions of the sun. (Photo by Randy Montoya) Click on the thumbnail for a high-resolution image.

“Our data, when inserted into the theoretical model, bring its predictions more closely into alignment with physical observations,” said Sandia lead investigator Jim Bailey. His team’s work appeared Jan. 1 in the journal Nature.

The gap between the model and observations appeared in 2000 when analysis of spectra emerging from the sun forced scientists to lower their estimates of energy-absorbing elements such as oxygen, nitrogen and carbon by 30 to 50 percent.

The decreased abundances meant that the model then predicted that energy would arrive at the sun’s radiative edge more readily than before. This created a discrepancy between the star’s theoretical structure and its measured structure, which is based on variations in temperatures and densities at different locations.

To make the model once again agree with observations, scientists needed a way to balance the decreased resistance to radiation transport caused by the lowered amounts of the elements.

Bailey’s experimental group, including Taisuke Nagayama, Guillaume Loisel and Greg Rochau, in painstaking experiments spanning a 10-year period, discovered that the widely used astrophysical estimate of the wavelength-dependent opacity of iron should be increased between 30 to 400 percent. That difference does not represent a large uncertainty but rather how much iron’s opacity varies with the wavelength of the radiation.

“This represents roughly half the change in the mean opacity needed to resolve the solar problem, even though iron is only one of many elements that contribute,” the authors write in their paper.

Getting accurate data has been difficult, as “the inside of a star is one of the most mysterious places in the universe,” Bailey said. “It’s too opaque for distant instruments to see inside and analyze reactions within it, and too hot to send a probe into it. It has also been too difficult to run tests under appropriate conditions in a laboratory. So the physics that describes how atoms, embedded in solar plasma, absorb radiation, has never been experimentally tested. Yet that process dominates the way energy generated by nuclear reactions in the sun’s interior is transported to the outside.

“Fortunately, in our Z experiments, we can create temperature and density conditions nearly the same as the region inside the sun that affects the discrepancy the most — the edge of the zone where radiative energy transport dominates — in a sample that’s big enough, lasts long enough, and is uniform enough to test. We used that new capability to measure the opacity of iron, one of a few elements that plays the most important part in radiative energy transfer.”

Iron is important because, of all the elements abundant in the sun, it maintains the highest number of bound electrons essential in radiative energy transfer, and thus has a large effect on the outcome of solar models.

Still, the upward revision of opacities as a solution is bound to be controversial.
“No matter what we do, we can’t make measurements at all the different conditions we need to know,” said Nagayama. “There are 20 elements present, and a large range of temperatures and densities. We study iron because its complex electronic structure is a challenge to represent in opacity theories. And it is important in solar physics. The sun is a test bed to model other stars. Without experimental tests, we don’t know if these models are accurate. To the extent we fail to understand the sun, then the workings of other stars are subject to some uncertainty.”

Sandia’s Z machine creates the temperature of the sun’s interior — about 2.1 million degrees —in a target about the size of a grain of sand. From that small sample, Bailey could do what theorists cannot: hold in his hand tangible evidence for the way iron atoms behave inside stars.

The target design for recent experiments involved intermingled iron and magnesium, tamped by plastic and beryllium layers on both sides. Radiation streaming through the sample heats up the iron and magnesium, which expand. The plastic restrains the expansion to keep it more uniform for opacity measurements. Magnesium provides information about corresponding density and temperature.

The work was sponsored by the National Nuclear Security Administration and the DOE Office of Science.

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness.

Sandia news media contact: Neal Singer, nsinger@sandia.gov, (505) 845-7078

Neal Singer | newswise
Further information:
http://www.sandia.gov

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>