Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iron in the sun: a greenhouse gas for X-ray radiation

06.09.2013
Novel X-ray spectroscopic method provides valuable data on highly charged iron ions for astrophysics

Scientists from the Heidelberg Max Planck Institute for Nuclear Physics (MPIK) in cooperation with DESY (Hamburg) at the synchrotron PETRA III have investigated for the first time X-ray absorption of highly charged iron ions.


Illustration of the inner structure of the Sun: The energy released by nuclear fusion of hydrogen to helium in the Sun’s core is transported outwards via radiation. In the outer shell energy transfer is dominated by convection.

Graphics (modified by MPIK): Kelvinsong, Wikimedia Commons http://commons.wikimedia.org/wiki/File:Sun_poster.svg


Transportable trap for highly charged ions (EBIT) in operation at the X-ray laser LCLS (Stanford Linear Accelerator Center, Menlo Park, California, USA).

Photo: J. R. Crespo López-Urrutia, MPIK

A transportable ion trap developed at MPIK was used for generation and storage of the ions. The high-precision measurements provide important new insight into the role of highly charged ions in astrophysical plasmas, e. g. for radiation transport inside stars. [Physical Review Letters, September 5, 2013]

Highly charged ions - that is, atoms which have been stripped off most of their electrons - play an important role in astrophysics. Within the large accumulations of visible (luminous) matter in the universe, the highly charged state is the natural one. This is the case in stellar atmospheres as well as in the interior of stars, where temperatures of several million degrees Celsius rule. Highly charged ions also abound around exotic objects such as neutron stars or black holes. Before matter plunges into their cores, it delivers gravitational energy, heating up and emitting extremely intense X-rays, which can be observed.

X-rays also determine the energy transport inside the Sun. At its core temperature of 15 million degrees, a natural fusion power plant runs with a total capacity of about 4•10^26 watts. The power density of 200 watts per cubic meter is, however, modest, and corresponds to about that of a compost heap. In contrast to such, the Sun is very large. If the solar core would freely radiate X-rays at those temperatures, a power exceeding the fusion energy yield by 11 orders of magnitude would be lost. The sun works because the radiation transport to the outside is inhibited, thus maintaining the high core temperature. Convection, the heat transport by turbulent upstream flows of hot matter, only takes place further outward, starting at about 70% of the solar radius. This good insulation reduces hydrogen consumption and extends the duration of fusion in our central star to the billions of years that are needed for the formation of a stable planetary system, and ultimately for the development of life.

A measure of the inhibition of radiation transport is the ‘opacity’ of the solar matter, a term describing how efficiently radiation is absorbed by it. Although the Sun consists mainly of hydrogen and helium, these elements only play a secondary role for the opacity. Their share of it diminishes from about 50% in the outer core to below 20% in the radiation zone. Crucial there are the tiny impurities (about 1.6% by mass) of heavier elements, dubbed by astronomers ‘metals’. Besides oxygen, iron, with its mass fraction of only 0.14%, plays for X-rays the role of a greenhouse gas, and contributes about a quarter of the total opacity. To illustrate it: the total amount of iron in the sun would reach for a solid wall of about 100 km thickness at the edge of the radiation zone, at 500,000 km radius. As a dilute impurity in the solar plasma, iron takes a substantial role in the X-ray shielding.

In order to better understand the role of these stellar ‘trace gases’ and obtain reliable data for comparison with astronomical observations, physicists in the team of José R. Crespo López-Urrutia from the Heidelberg Max Planck Institute for Nuclear Physics (MPIK) have prepared, in cooperation with colleagues from DESY (Hamburg) and eight other institutions worldwide, highly charged iron ions in eight different charge states and studied them systematically. PhD student Jan Rudolph and his colleagues installed a mobile electron beam ion trap (EBIT) for the production and storage of highly charged ions at the PETRA III storage ring. This facility provides one of the world's most powerful X-ray beams, which was focused onto the trapped ions and tuned in its energy. In this way, the absorption of the X-ray radiation by the iron ions could be measured for the first time, and with high precision. This new laboratory astrophysical data show a good agreement with the latest theoretical calculations. In addition to the characteristic energies of the absorption lines found in the spectra, their natural line width (for the first time measured in this experiment) is also very important, because it determines the maximum radiant power which a single iron ion can handle. It amounts almost one watt per ion for the observed X-ray transitions. Even within the solar core, iron ions are not yet saturated with respect to radiation transport, because they can absorb and emit X-ray photons a million times faster than normal atoms can do with the much less energetic visible photons. This combination of high rates and high photon energy crucially determines the dominance of iron in the solar radiation balance.

The new data provide valuable insights for the opacity calculations that can be used as the basis of stellar models. In addition, they also help in the diagnostics of astrophysical plasmas, such as those surrounding active galactic nuclei, or in binary systems containing compact objects - such as neutron stars or black holes - accreting matter from the partner star. The iron X-ray lines studied here are usually the last spectroscopic witnesses of such processes.

Original publication:
X-Ray Resonant Photoexcitation: Linewidths and Energies of Kα Transitions in Highly Charged Fe Ions

J. K. Rudolph et al., Physical Review Letters 111, 103002 (2013) DOI: 10.1103/PhysRevLett.111.103002 http://link.aps.org/doi/10.1103/PhysRevLett.111.103002

Dr. Bernold Feuerstein | Max-Planck-Institut
Further information:
http://www.mpi-hd.mpg.de/ullrich/page.php?id=36

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>