Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iron-based materials may unlock superconductivity's secrets

17.11.2008
Researchers at the National Institute of Standards and Technology (NIST) are decoding the mysterious mechanisms behind the high-temperature superconductors that industry hopes will find wide use in next-generation systems for storing, distributing and using electricity.

In two new papers* on a recently discovered class of high-temperature superconductors, they report that the already complicated relationship between magnetism and superconductivity may be more involved than previously thought, or that a whole new mechanism may drive some types of superconductors.

At temperatures approaching absolute zero, many materials become superconductors, capable of carrying vast amounts of electrical current with no resistance. In such low-temperature superconductors, magnetism is a villain whose appearance shatters the fragile superconductive state. But in 1986, scientists discovered "high temperature" (HTc) superconductors capable of operating much warmer than the previous limit of 30 degrees above absolute zero. In fact, today's copper-oxide materials are superconductive in liquid nitrogen, a bargain-priced coolant that goes up to a balmy 77 degrees above absolute zero. Such materials have enabled applications as diverse as high-speed maglev trains, magnetic-resonance imagers and highly sensitive astronomical detectors. Still, no one really understands how HTc superconductivity works, although scientists have long suspected that in this case, magnetism boosts rather than suppresses the effect.

The beginnings of what could be a breakthrough came in early 2008 when Japanese researchers announced discovery of a new class of iron-based HTc superconductors. In addition to being easier to shape into wires and otherwise commercialize than today's copper-oxides, such materials provide scientists fresh new subjects with which to develop and test theories about HTc superconductivity's origins.

Scientists at NIST's Center for Neutron Research and a team including researchers from the University of Tennessee at Knoxville, Oak Ridge National Laboratory, the University of Maryland, Ames Laboratory and Iowa State University used beams of neutrons to peek into a superconductor's atomic structure. They first found iron-based superconductors to be similar to copper-oxide materials in how "doping" (adding specific elements to insulators in or around a HTc superconductor) influences their magnetic properties and superconductivity.

Then the team tested the iron-based material** without doping it. Under moderate pressure, the volume of the material's crystal structure compressed an unusually high 5 percent. Intriguingly, it also became superconductive without a hint of magnetism.

The iron-based material's behavior under pressure may suggest the remarkable possibility of an entirely different mechanism behind superconductivity than with copper oxide materials, NIST Fellow Jeffrey Lynn said. Or it could be that magnetism is simply an ancillary part of HTc superconductivity in general, he said—and that a similar, deeper mechanism underlies the superconductivity in both. Understanding the origin of the superconductivity will help engineers tailor materials to specific applications, guide materials scientists in the search for new materials with improved properties and, scientists hope, usher in higher-temperature superconductors.

* J. Zhao, Q. Huang, C. de al Cruz, S. Li, J. W. Lynn, Y. Chen, M. A. Green, G. F. Chen, G. Li, Z. C. Li, J. L. Luo, N. L. Wang and P. Dai. Structural and magnetic phase diagram of CeFeAsO1-xFx and its relationship to high-temperature superconductivity. Nature Materials (DOI 10.1038/nmat2315).

A. Kreyssig, M. A. Green, Y. B. Lee, G. D. Samolyuk, P. Zajdel, J. W. Lynn, S. L. Bud'ko, M. S. Torikachvili, N. Ni, S. Nandi, J. Leão, S. J. Poulton, D. N. Argyriou, B. N. Harmon, P. C. Canfield, R. J. McQueeney and A. I. Goldman. Pressure-induced volume-collapsed tetragonal phase of CaFe2As2 as seen via neutron scattering. Phys. Rev. B 78 (in press).

** CaFe2As2

Evelyn Brown | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>