Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Iowa State supercomputer, Cystorm, unleashes 28.16 trillion calculations per second

24.08.2009
Srinivas Aluru recently stepped between the two rows of six tall metal racks, opened up the silver doors and showed off the 3,200 computer processor cores that power Cystorm, Iowa State University's second supercomputer.

And there's a lot of raw power in those racks.

Cystorm, a Sun Microsystems machine, boasts a peak performance of 28.16 trillion calculations per second. That's five times the peak of CyBlue, an IBM Blue Gene/L supercomputer that's been on campus since early 2006 and uses 2,048 processors to do 5.7 trillion calculations per second.

Aluru, the Ross Martin Mehl and Marylyne Munas Mehl Professor of Computer Engineering and the leader of the Cystorm project, said the new machine also scores high on a more realistic test of a supercomputer's actual performance: 15.44 trillion calculations per second compared to CyBlue's 4.7 trillion per second. That measure makes Cystorm 3.3 times more powerful than CyBlue.

Those performance numbers, however, do not earn Cystorm a spot on the TOP500 list of the world's fastest supercomputers. (When CyBlue went online three years ago, it was the 99th most powerful supercomputer on the list.)

"Cystorm is going to be very good for data-intensive research projects," Aluru said. "The capabilities of Cystorm will help Iowa State researchers do new, pioneering research in their fields."

The supercomputer is targeted for work in materials science, power systems and systems biology.

Aluru said materials scientists will use the supercomputer to analyze data from the university's Local Electrode Atom Probe microscope, an instrument that can gather data and produce images at the atomic scale of billionths of a meter. Systems biologists will use the supercomputer to build gene networks that will help researchers understand how thousands of genes interact with each other. Power systems researchers will use the supercomputer to study the security, reliability and efficiency of the country's energy infrastructure. And computer engineers will use the supercomputer to build a software infrastructure that helps users make decisions by identifying relevant information sources.

"These research efforts will lead to significant advances in the penetration of high performance computing technology," says a summary of the Cystorm project. "The project will bring together multiple departments and research centers at Iowa State University and further enrich interdisciplinary culture and training opportunities."

Joining Aluru on the Cystorm project are five Iowa State researchers: Maneesha Aluru, an associate scientist in electrical and computer engineering and genetics, development and cell biology; Baskar Ganapathysubramanian, an assistant professor and William March Scholar in Mechanical Engineering; James McCalley, the Harpole Professor in Electrical Engineering; Krishna Rajan, a professor of materials science and engineering; and Arun Somani, Anson Marston Distinguished Professor in Engineering and Jerry R. Junkins Endowed Chair of electrical and computer engineering. Steve Nystrom, a systems support specialist for the department of electrical and computer engineering, is the system administrator for Cystorm.

The researchers purchased the computer with a $719,000 grant from the National Science Foundation, $400,000 from Iowa State colleges, departments and researchers, and a $200,000 equipment donation from Sun Microsystems.

Because of Cystorm, the computer company will designate Iowa State a Sun Microsystems Center of Excellence for Engineering Informatics and Systems Biology.

While Cystorm is much more powerful than CyBlue, Aluru said Iowa State's first supercomputer will still be used by researchers across campus.

"CyBlue will still be around," Aluru said. "Researchers will use both systems to solve problems. Both systems enhance the research capabilities of Iowa State."

Srinivas Aluru | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht Transportable laser
23.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht New for three types of extreme-energy space particles: Theory shows unified origin
23.01.2018 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>