Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State physics researchers find new properties of the carbon material graphene

31.05.2012
Findings could have applications in high-speed communications fields.
Graphene has caused a lot of excitement among scientists since the extremely strong and thin carbon material was discovered in 2004. Just one atom thick, the honeycomb-shaped material has several remarkable properties combining mechanical toughness with superior electrical and thermal conductivity.

Now a group of scientists at Iowa State University, led by physicist Jigang Wang, has shown that graphene has two other properties that could have applications in high-speed telecommunications devices and laser technology – population inversion of electrons and broadband optical gain.
Wang is an assistant professor in the Department of Physics and Astronomy in the College of Liberal Arts and Sciences at Iowa State University. He also is an associate scientist with the Department of Energy's Ames Laboratory.

Wang's team flashed extremely short laser pulses on graphene. The researchers immediately discovered a new photo-excited graphene state characterized by a broadband population inversion of electrons. Under normal conditions, most electrons would occupy low-energy states and just a few would populate higher-energy states. In population-inverted states, this situation is reversed: more electrons populate higher, rather than lower, energy states. Such population inversions are very rare in nature and can have highly unusual properties. In graphene, the new state produces an optical gain from the infrared to the visible.
Simply stated, optical gain means more visible light comes out than goes in. This can only happen when the gain medium is externally pumped and then stimulated with light (stimulated emission). Wang’s discovery could open doors for efficient amplifiers in the telecommunication industry and extremely fast opto-electronics devices.

Graphene as a gain medium for light amplification

"It's very exciting," Wang said. "It opens the possibility of using graphene as a gain medium for light amplification. It could be used in making broadband optical amplifiers or high-speed modulators for telecommunications. It even provides implications for development of graphene-based lasers."

Wang's team unveiled its findings in the journal Physical Review Letters on April 16. In addition to Wang, the paper's other authors are Tianq Li, Liang Luo and Junhua Zhang, Iowa State physics graduate students; Miron Hupalo, Ames Laboratory scientist; and Michael Tringides and Jörg Schmalian, Iowa State physics professors and Ames Laboratory scientists.

Wang is a member of the Condensed Matter Physics program at Iowa State and the Ames Laboratory. He and his team conduct optical experiments using laser spectroscopy techniques, from the visible to the mid-infrared and far-infrared spectrum. They use ultrashort laser pulses down to 10 quadrillionths of a second to study the world of nanoscience and correlated electron materials.
In 2004 United Kingdom researchers Andre Geim and Konstantin Novoselov discovered graphene, which led to their winning the 2010 Nobel Prize in Physics. Graphene is a two-dimensional (height and width) material with a growing list of known unique properties. It is a single layer of carbon only one atom thick. The carbon atoms are connected in a hexagonal lattice that looks like a honeycomb. Despite a lack of bulk, graphene is stronger than steel, it conducts electricity as well as copper and conducts heat even better. It is also flexible and nearly transparent.

An understanding gap existed, Wang explained, between the two scientific communities that studied the electronic and photonic properties of graphene. He believed his group could help bridge the gap by elaborating the non-linear optical properties of graphene and understanding the non-equilibrium electronic state. Wang explained that linear optical properties only transmit light – one light signal comes into a material and one comes out. "The non-linear property can change and modulate the signal, not just transmit it, producing functionality for novel device applications."

Graphene in a highly non-linear state
Wang said other scientists have studied graphene's optical properties, but primarily in the linear regime. His team hypothesized they could generate a new "very unconventional state" of graphene resulting in population inversion and optical gain.

"We were the first group to break new ground, to start looking at it in a highly excited state consisting of extremely dense electrons – a highly non-linear state. In such a state, graphene has unique properties."

Wang's group started with high-quality graphene monolayers grown by Hupalo and Tringides in the Ames Laboratory. The researchers used an ultrafast laser to "excite" the material's electrons with short pulses of light just 35 femtoseconds long (35 quadrillionths of a second). Through measurements of the photo-induced electronic states, Wang's team found that optical conductivity (or absorption) of the graphene layers changed from positive to negative – resulting in the optical gain – when the pump pulse energy was increased above a threshold.

The results indicated that the population inverted state in photoexcited graphene emitted more light than it absorbed. "The absorption was negative. It meant that population inversion is indeed established in the excited graphene and more light came out of the inverted medium than what entered, which is optical gain," Wang said. "The light emitted shows gain of about one percent for a layer a mere one atom thick, a figure on the same order to what's seen in conventional semiconductor optical amplifiers hundreds of times thicker."

The key to the experiments, of course, was creating the highly non-linear state, something "that does not normally exist in thermal equilibrium," Wang said. "You cannot simply put graphene under the light and study it. You have to really excite the electrons with the ultrafast laser pulse and have the knowledge on the threshold behaviors to arrive at such a state."

Wang said a great deal more engineering and materials perfection lies ahead before graphene's full potential for lasers and optical telecommunications is ever realized. "The research clearly shows, though, that lighting up graphenes may produce brighter emissions as well as a bright future," he said.

NEWS RELEASE
College of Liberal Arts and Sciences (www.las.iastate.edu)
Iowa State University

Contacts:
Jigang Wang Physics, (515) 294-5630, jgwang@iastate.edu
Steve Jones, Liberal Arts & Sciences Communications, (515) 294-0461, jones@iastate.edu

Jigang Wang | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>