Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State Physicists Among Teams Preparing for New Energy Department Supercomputer

02.10.2014

A team of Iowa State University nuclear physicists is preparing to scale up its computer codes for Cori, the next-generation supercomputer being developed by the National Energy Research Scientific Computing Center.

Iowa State’s Pieter Maris and James Vary want to use the supercomputer to study the basic physics of the burning sun and exploding stars. Those studies could one day lead to safer, more efficient forms of nuclear power.


Photo by Bob Elbert/Iowa State University

Iowa State University's Pieter Maris, left, and James Vary will get a head start on scaling up their computer codes for the Energy Department's next-generation supercomputer.

“We’ll work with a select group of top computer scientists and applied mathematicians to co-develop new math algorithms and new schemes in order to get the best science out of this new supercomputing architecture,” said Vary, an Iowa State professor of physics and astronomy.

The $70 million supercomputer is expected to go online in 2016. It’s named after Gerty Cori, the first American woman to win a Nobel Prize in science. And it’s being developed by the National Energy Research Scientific Computing Center based at Lawrence Berkeley National Laboratory in Berkeley, Calif. The center is the primary high-performance computing center for scientific research sponsored by the U.S. Department of Energy’s Office of Science.

Cori is designed to be extremely energy efficient, lowering one of the barriers to developing supercomputers at the exascale – machines capable of a quintillion calculations per second.

Research teams across the country recently competed for a head start on scaling up their codes for Cori. The 20 winners will now work with staff from the computing center and with Cori’s developers from Cray Inc. and Intel Corp.

Those research teams “will be doing the ‘heavy lifting’ during the project and will help us ensure that the workload is ready when Cori is deployed,” Harvey Wasserman of the computing center said in a statement. “This exciting machine architecture is now being followed by exciting science in the national interest.”

The Iowa State research will be led by Maris, a research associate professor of physics and astronomy. He and Vary have collaborated on other projects and have won supercomputing time to study the structure and reactions of rare and exotic nuclei.

They’ll use Cori to study two classes of nuclear states – the weakly bound states and the resonant states – in the nuclei of various isotopes of light elements such as hydrogen, helium, lithium and beryllium. Isotopes of the elements contain varying numbers of neutrons and often have very short lifetimes yet play critical roles in nuclear fusion, a valuable energy source for the future.

Helium-4, for example, is stable and has two protons and two neutrons. But the isotope helium-6 has two extra neutrons and quickly decays.

Those neutrons can be weakly bound to the nucleus or, in a resonant state, the extra neutrons come and go, forming a kind of cloud around the nucleus.

So why do we need to understand those isotopes and their reactions? And why would the energy department include a study of them in its latest supercomputer project?

First, Vary and Maris have already developed supercomputer software (called “Many Fermion Dynamics – nuclear physics”) to study isotopes, their structures and their reactions, studies that are very difficult and expensive to do in a laboratory.

And second, “We’re seeking to understand how the sun burns and how stars explode,” Vary said. “We want to understand how these astronomical environments tick.”

That, he said, could lead to a much better understanding of fusion and fission energy.

“The value of precise information about how fission works is the ability to design better reactors, reactors with less waste and more safety,” Vary said. “We need the basic science to predict what’s unknown. And that can help the fission and fusion energy industries.”

Contact Information

James Vary, Physics and Astronomy, 515-294-8894, jvary@iastate.edu 

James Vary | newswise
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>