Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State astronomer helps research team see misaligned planets in distant system

18.10.2013
Using data from NASA's Kepler space telescope, an international team of astronomers has discovered a distant planetary system featuring multiple planets orbiting at a severe tilt to their host star.

Such tilted orbits had been found in planetary systems featuring a "hot Jupiter," a giant planet in a close orbit to its host star. But, until now, they hadn't been observed in multiplanetary systems without such a big interloping planet.

The discovery is reported in a paper, "Stellar Spin-Orbit Misalignment in a Multiplanet System," published in the Oct. 18 issue of the journal Science. The lead author of the study is Daniel Huber of NASA's Ames Research Center in Mountain View, Calif. Steve Kawaler, an Iowa State University professor of physics and astronomy and a leader of the Kepler Asteroseismic Investigation, is a co-author.

"This is a new level of detail about the architecture of a planetary system outside our solar system," Kawaler said. "These studies allow us to draw a detailed picture of a distant system that provides a new and critical test of our understanding of how these very alien solar systems are structured."

Kawaler contributed as part of the research team that studied regular changes in the brightness of the host star, Kepler-56, an aging red giant star with two planets in close orbits and a massive third planet in a distant orbit. By measuring those oscillation frequencies and using spectroscopy data about the star's temperature and chemistry, researchers measured the star's diameter and other properties.

The paper reports Kepler-56 is more than four times the radius of our sun. Its mass is also 30 percent greater than our sun. It is about 3,000 light years from Earth.

Kawaler said he was also part of the team that used studies of the changes in brightness to help determine the tilt of the rotation axis of Kepler-56. That axis is tilted 45 degrees to the line of sight from Earth.

Generally, Kawaler said, the simplest way for a planetary system to develop is with the orbits in the same plane as the host star's equator. That typically indicates the planets formed from a thin disk of dust and gas surrounding the host star. The planets in our solar system all orbit within 7 degrees of the plane of the sun's equator.

A planet orbit that tilts away from other planets or from the host star's equator can mean the planet had a traumatic youth, Kawaler said. It may have been pulled into a different plane after encountering another planet or planets. That's generally the case with migrating hot Jupiters. They change their orbits after encounters with other planets and material, and therefore have a higher chance of tilted orbits.

In the case of Kepler-56, however, the more massive outer planet seems to be maintaining the tilted orbits of the two inner planets.

"It issues a continuous tug on the orbit of the smaller ones, pulling them into their inclined orbits," Kawaler said.

All of those Kepler-56 observations, the researchers noted in their Science paper, add up to firm evidence that tilted planetary orbits are possible even in systems that don't contain a hot Jupiter.

Contacts:
Steve Kawaler, Physics and Astronomy, 515-294-9728, sdk@iastate.edu
Mike Krapfl, News Service, 515-294-4917, mkrapfl@iastate.edu

Steve Kawaler | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>