Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State astronomer helps research team see misaligned planets in distant system

18.10.2013
Using data from NASA's Kepler space telescope, an international team of astronomers has discovered a distant planetary system featuring multiple planets orbiting at a severe tilt to their host star.

Such tilted orbits had been found in planetary systems featuring a "hot Jupiter," a giant planet in a close orbit to its host star. But, until now, they hadn't been observed in multiplanetary systems without such a big interloping planet.

The discovery is reported in a paper, "Stellar Spin-Orbit Misalignment in a Multiplanet System," published in the Oct. 18 issue of the journal Science. The lead author of the study is Daniel Huber of NASA's Ames Research Center in Mountain View, Calif. Steve Kawaler, an Iowa State University professor of physics and astronomy and a leader of the Kepler Asteroseismic Investigation, is a co-author.

"This is a new level of detail about the architecture of a planetary system outside our solar system," Kawaler said. "These studies allow us to draw a detailed picture of a distant system that provides a new and critical test of our understanding of how these very alien solar systems are structured."

Kawaler contributed as part of the research team that studied regular changes in the brightness of the host star, Kepler-56, an aging red giant star with two planets in close orbits and a massive third planet in a distant orbit. By measuring those oscillation frequencies and using spectroscopy data about the star's temperature and chemistry, researchers measured the star's diameter and other properties.

The paper reports Kepler-56 is more than four times the radius of our sun. Its mass is also 30 percent greater than our sun. It is about 3,000 light years from Earth.

Kawaler said he was also part of the team that used studies of the changes in brightness to help determine the tilt of the rotation axis of Kepler-56. That axis is tilted 45 degrees to the line of sight from Earth.

Generally, Kawaler said, the simplest way for a planetary system to develop is with the orbits in the same plane as the host star's equator. That typically indicates the planets formed from a thin disk of dust and gas surrounding the host star. The planets in our solar system all orbit within 7 degrees of the plane of the sun's equator.

A planet orbit that tilts away from other planets or from the host star's equator can mean the planet had a traumatic youth, Kawaler said. It may have been pulled into a different plane after encountering another planet or planets. That's generally the case with migrating hot Jupiters. They change their orbits after encounters with other planets and material, and therefore have a higher chance of tilted orbits.

In the case of Kepler-56, however, the more massive outer planet seems to be maintaining the tilted orbits of the two inner planets.

"It issues a continuous tug on the orbit of the smaller ones, pulling them into their inclined orbits," Kawaler said.

All of those Kepler-56 observations, the researchers noted in their Science paper, add up to firm evidence that tilted planetary orbits are possible even in systems that don't contain a hot Jupiter.

Contacts:
Steve Kawaler, Physics and Astronomy, 515-294-9728, sdk@iastate.edu
Mike Krapfl, News Service, 515-294-4917, mkrapfl@iastate.edu

Steve Kawaler | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

nachricht Large, distant comets more common than previously thought
26.07.2017 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>