Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ions in the spotlight

02.11.2017

Experiment by Freiburg physicists published in science journal

The results of a research group from the Institute of Physics at the University of Freiburg has been given a special place in the “Nature Photonics” journal: an accompanying “News & Views” article in the print version of the science journal highlights the work of the team led by Alexander Lambrecht, Julian Schmidt, Dr. Leon Karpa and Prof. Dr. Tobias Schätz.


Lasers of various wavelengths are used to cool the ions to a thousandth of a Kelvin at the start of an experiment.

Photo: Julian Schmidt

In their article “Long lifetimes and effective isolation of ions in optical and electrostatic traps”, the work group describes the method they used to prevent the previously unavoidable driven motion of trapped charged atoms.

The experiment begins by trapping individual Barium ions in a quadrupole ion trap, known as a Paul trap. A quadrupole ion trap can store charged particles for days using alternating electric fields. However this results in the ion constantly swirling on a microscopic scale and executing a forced driven motion. This often leads to undesirable side-effects.

For example, in current experiments with ultracold atoms, the ions heat up the bath of neutral atoms – which is actually far cooler – like an immersion heater, instead of being cooled. This causes the temperature to rise by a factor of 10,000. Although this is still barely a thousandth of a degree Celsius above absolute zero, it already leads to heat death for sensitive quantum effects.

This is where the method that the group has been developing for its objectives since 2010 comes in: optical trapping of charged atoms. An extremely bright laser is used to trap the ion in its beam without compelling additional movement. A few years ago it was only possible to optically trap ions for a few milliseconds.

Thanks to the work of the Freiburg physicists, it is now possible to trap charged atoms for similar timescales as neutral atoms in comparable optical traps – a lifetime of several seconds is several times longer than is required for experiments. In addition, the researchers have shown that they can also isolate the ions adequately from the remaining outside world.

The team now hopes to use this method to achieve 10,000-times lower temperatures and observe ultracold chemical processes in which quantum effects will dominate the interaction of the particles.

In 2015 Tobias Schätz received a Consolidator Grant from the European Research Council (ERC) for his approach to trapping atoms and ions with light: www.pr.uni-freiburg.de/pm/2015/pm.2015-02-17.18

Original publication
Alexander Lambrecht, Julian Schmidt, Pascal Weckesser, Markus Debatin, Leon Karpa & Tobias Schaetz (2017): Long lifetimes and effective isolation of ions in optical and electrostatic traps. In: Nature Photonics 11, S. 704–707. https://www.nature.com/articles/s41566-017-0030-2

“News & Views”: https://www.nature.com/articles/s41566-017-0036-9


Contact:
Prof. Dr. Tobias Schätz
Institute of Physics
University of Freiburg
Tel.: +49 761/203-5815
E-Mail: tobias.schaetz@physik.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/2017/ions-in-the-spotlight?set_language=en

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Physics and Astronomy:

nachricht Scientists narrow down the search for dark photons using decade-old particle collider data
09.11.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht Need entangled atoms? Get 'Em FAST! with NIST's new patent-pending method
08.11.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

Im Focus: Support Free with “TwoCure” – Innovation in Resin-Based 3D Printing

The Fraunhofer Institute for Laser Technology ILT and Rapid Shape GmbH are working together to further develop resin-based 3D printing. The new “TwoCure” process requires no support structures and is significantly more efficient and productive than conventional 3D printing techniques for plastic components. Experts from Fraunhofer ILT will be presenting the state-funded joint development that makes use of the interaction of light and cold in forming the components at formnext 2017 from November 14 to 17 in Frankfurt am Main.

Much like stereolithography, one of the best-known processes for printing 3D plastic components works using photolithographic light exposure that causes liquid...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

 
Latest News

A gel that does not break or dry out

09.11.2017 | Materials Sciences

Scientists narrow down the search for dark photons using decade-old particle collider data

09.11.2017 | Physics and Astronomy

Wireless handheld spectrometer transmits data to smartphone

09.11.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>