Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When ions get closer: RUB researchers discover new physical attraction in quantum plasmas

26.03.2012
New physical attraction between ions in quantum plasmas
RUB physicists discover unknown negative potential at nano-scales

Nowadays, ever smaller and more powerful computer chips are in demand. RUB physicists have discovered a new physical attraction that accelerates this progress. Prof. Dr. Padma Kant Shukla and Dr. Bengt Eliasson found a previously unknown phenomenon in quantum plasmas. A negatively charged potential makes it possible to combine positively charged particles (ions) in atom-like structures within the plasma. In this way, current can be conducted much more quickly and efficiently than before, opening new perspectives for nanotechnology. The researchers report on their findings in Physical Review Letters (in print).

Electrons and ions in ordinary plasmas

An ordinary plasma is an ionized electrically conducting gas consisting of positive (ions) and negative charge carriers (so-called non-degenerate electrons). This is the chief constituent of our solar system. On Earth, such plasmas among others can be used to produce energy in controlled thermonuclear fusion plasmas similar to the sun, or even to fight disease in the medical application field.

New effect on the atomic scale in quantum plasmas

Quantum plasmas extend the area of application to nano-scales, where quantum-mechanical effects gain significance. This is the case when, in comparison to normal plasmas, the plasma density is very high and the temperature is low. Then the newly discovered potential occurs, which is caused by collective interaction processes of degenerate electrons with the quantum plasma. Such plasmas can be found, for example, in cores of stars with a dwindling nuclear energy supply (white dwarfs), or they can be produced artificially in the laboratory by means of laser irradiation. The new negative potential causes an attractive force between the ions, which then form lattices. They are compressed and the distances between them shortened, so that current can flow through them much faster.

Microchips and semiconductors

The findings of the Bochum scientists open up the possibility of ion-crystallization on the magnitude scale of an atom. They have thus established a new direction of research that is capable of linking various disciplines of physics. Applications include micro-chips for quantum computers, semiconductors, thin metal foils or even metallic nano-structures.

Bibliographic record

P. K. Shukla and B. Eliasson (2012): Novel Attractive Force Between Ions in Quantum Plasmas, Physical Review Letters 108, in press.

Further information

Prof. Dr. Dr. h. c. mult. Padma Kant Shukla, RUB International Chair, Department of Physics and Astronomy at the Ruhr-Universität Bochum, 44780 Bochum, 0234/32-23759, profshukla@yahoo.de

Homepage: http://homepage.rub.de/Padma.Shukla

Editor: Marie-Astrid Reinartz

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>