Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When ions get closer: RUB researchers discover new physical attraction in quantum plasmas

26.03.2012
New physical attraction between ions in quantum plasmas
RUB physicists discover unknown negative potential at nano-scales

Nowadays, ever smaller and more powerful computer chips are in demand. RUB physicists have discovered a new physical attraction that accelerates this progress. Prof. Dr. Padma Kant Shukla and Dr. Bengt Eliasson found a previously unknown phenomenon in quantum plasmas. A negatively charged potential makes it possible to combine positively charged particles (ions) in atom-like structures within the plasma. In this way, current can be conducted much more quickly and efficiently than before, opening new perspectives for nanotechnology. The researchers report on their findings in Physical Review Letters (in print).

Electrons and ions in ordinary plasmas

An ordinary plasma is an ionized electrically conducting gas consisting of positive (ions) and negative charge carriers (so-called non-degenerate electrons). This is the chief constituent of our solar system. On Earth, such plasmas among others can be used to produce energy in controlled thermonuclear fusion plasmas similar to the sun, or even to fight disease in the medical application field.

New effect on the atomic scale in quantum plasmas

Quantum plasmas extend the area of application to nano-scales, where quantum-mechanical effects gain significance. This is the case when, in comparison to normal plasmas, the plasma density is very high and the temperature is low. Then the newly discovered potential occurs, which is caused by collective interaction processes of degenerate electrons with the quantum plasma. Such plasmas can be found, for example, in cores of stars with a dwindling nuclear energy supply (white dwarfs), or they can be produced artificially in the laboratory by means of laser irradiation. The new negative potential causes an attractive force between the ions, which then form lattices. They are compressed and the distances between them shortened, so that current can flow through them much faster.

Microchips and semiconductors

The findings of the Bochum scientists open up the possibility of ion-crystallization on the magnitude scale of an atom. They have thus established a new direction of research that is capable of linking various disciplines of physics. Applications include micro-chips for quantum computers, semiconductors, thin metal foils or even metallic nano-structures.

Bibliographic record

P. K. Shukla and B. Eliasson (2012): Novel Attractive Force Between Ions in Quantum Plasmas, Physical Review Letters 108, in press.

Further information

Prof. Dr. Dr. h. c. mult. Padma Kant Shukla, RUB International Chair, Department of Physics and Astronomy at the Ruhr-Universität Bochum, 44780 Bochum, 0234/32-23759, profshukla@yahoo.de

Homepage: http://homepage.rub.de/Padma.Shukla

Editor: Marie-Astrid Reinartz

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>