Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ionized plasmas as cheap sterilizers for developing world

16.11.2011
Low-temperature discharges generate oxygen, nitrogen radicals that kill microbes for week

University of California, Berkeley, scientists have shown that ionized plasmas like those in neon lights and plasma TVs not only can sterilize water, but make it antimicrobial – able to kill bacteria – for as long as a week after treatment.


A brief spark in air produces a low-temperature plasma of partially ionized and dissociated oxygen and nitrogen that will diffuse into nearby liquids or skin, where they can kill microbes similar to the way some drugs and immune cells kill microbes by generating similar or identical reactive chemicals. Credit: Steve Graves

Devices able to produce such plasmas are cheap, which means they could be life-savers in developing countries, disaster areas or on the battlefield where sterile water for medical use – whether delivering babies or major surgery – is in short supply and expensive to produce.

"We know plasmas will kill bacteria in water, but there are so many other possible applications, such as sterilizing medical instruments or enhancing wound healing," said chemical engineer David Graves, the Lam Research Distinguished Professor in Semiconductor Processing at UC Berkeley. "We could come up with a device to use in the home or in remote areas to replace bleach or surgical antibiotics."

Low-temperature plasmas as disinfectants are "an extraordinary innovation with tremendous potential to improve health treatments in developing and disaster-stricken regions," said Phillip Denny, chief administrative officer of UC Berkeley's Blum Center for Developing Economies, which helped fund Graves' research and has a mission of addressing the needs of the poor worldwide.

"One of the most difficult problems associated with medical facilities in low-resource countries is infection control," added Graves. "It is estimated that infections in these countries are a factor of three-to-five times more widespread than in the developed world."

Graves and his UC Berkeley colleagues published a paper in the November issue of the Journal of Physics D: Applied Physics, reporting that water treated with plasma killed essentially all the E. coli bacteria dumped in within a few hours of treatment and still killed 99.9 percent of bacteria added after it sat for seven days. Mutant strains of E. coli have caused outbreaks of intestinal upset and even death when they have contaminated meat, cheese and vegetables.

Based on other experiments, Graves and colleagues at the University of Maryland in College Park reported Oct. 31 at the annual meeting of the American Vacuum Society that plasma can also "kill" dangerous proteins and lipids – including prions, the infectious agents that cause mad cow disease – that standard sterilization processes leave behind.

In 2009, one of Graves' collaborators from the Max Planck Institute for Extraterrestrial Physics built a device capable of safely disinfecting human skin within seconds, killing even drug-resistant bacteria.

"The field of low-temperature plasmas is booming, and this is not just hype. It's real!" Graves said.

In the study published this month, Graves and his UC Berkeley colleagues showed that plasmas generated by brief sparks in air next to a container of water turned the water about as acidic as vinegar and created a cocktail of highly reactive, ionized molecules – molecules that have lost one or more electrons and thus are eager to react with other molecules. They identified the reactive molecules as hydrogen peroxide and various nitrates and nitrites, all well-known antimicrobials. Nitrates and nitrites have been used for millennia to cure meat, for example.

Graves was puzzled to see, however, that the water was still antimicrobial a week later, even though the peroxide and nitrite concentrations had dropped to nil. This indicated that some other reactive chemical – perhaps a nitrate – remained in the water to kill microbes, he said.

Plasma discharges have been used since the late 1800s to generate ozone for water purification, and some hospitals use low-pressure plasmas to generate hydrogen peroxide to decontaminate surgical instruments. Plasma devices also are used as surgical instruments to remove tissue or coagulate blood. Only recently, however, have low-temperature plasmas been used as disinfectants and for direct medical therapy, said Graves.

Graves recently focused on medical applications of plasmas after working for more than 20 years on low-temperature plasmas of the kind used to etch semiconductors. While sparks in air typically create hot plasmas of partially ionized and dissociated oxygen and nitrogen, a very brief spark creates similar molecules without heating the air. The reactive oxygen and nitrogen created by the plasma will diffuse into nearby liquids or skin, where they can kill microbes similar to the way some drugs and immune cells kill microbes by generating very similar or even identical reactive chemicals.

Despite the widespread use of plasmas, however, they are still not well characterized, Graves said. Plasma created in air, for example, produces different molecules than plasma in helium or argon. Much needs to be learned about different ways of producing plasmas, including plasma needles and jets, and how to maximize exposure against skin or liquid, such as by confining the plasma-generated chemicals near the surface of the treated object.

"I'm a chemical engineer who applies physics and chemistry to understanding plasmas," Graves said. "It's exciting to now look for ways to apply plasmas in medicine."

Graves' UC Berkeley coauthors are former post-doctoral fellow Matthew J. Traylor; graduate students Matthew J. Pavlovich and Sharmin Karim; undergraduate Pritha Hait; research associate Yukinori Sakiyama; and chemical engineer Douglas S. Clark, The Warren and Katharine Schlinger Distinguished Professor in Chemical Engineering and the chair of the Department of Chemical and Biomolecular Engineering.

The work on deactivating dangerous and persistent biological molecules was conducted with a group led by Gottlieb Oehrlein, a professor of materials science and engineering at the University of Maryland in College Park.

The research is supported by the U.S. Department of Energy's Office of Fusion Science Plasma Science Center, the UC Berkeley Blum Center for Developing Economies, and the UC Berkeley Sustainable Products and Solution Program.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>