Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ion ping pong reveals forces in atomic nuclei

20.06.2013
An international team of scientists has succeeded in determining the binding energies of exotic atomic nuclei by use of a multi-reflection time-of-flight mass spectrometer.

As reported in the journal Nature, important conclusions about the nature of the forces between the protons and neutrons in nuclei can be drawn by comparing the experimental results and new theoretical values. The difficult measurements were made possible by an extension to the precision experiment ISOLTRAP at the European research centre CERN.


Ion ping pong.
Figure: Frank Wienholtz


Schematic Overview of the new ISOLTRAP component for multi-reflection time-of-flight mass spectrometry. The ions are reflected back and forth between the “mirrors” whereby the different ion species are separated. Figure: Frank Wienholtz

The new component, contributed by physicists from the University of Greifswald, reflects ions back and forth like in a ping pong game. Using this method the team was the first to determine the masses of the artificially produced isotopes calcium-53 and calcium-54.

These isotopes play a key role in basic research in nuclear physics. The measurements confirm predictions by theorists from the Technical University of Darmstadt that also account for three-body forces.

From the masses of atomic nuclei one can deduce – via Einstein‘s equation E=mc2 – the energies with which protons and neutrons are bound in the nucleus. Particularly high binding energies are found for nuclei with “magic“ proton and neutron numbers. These special values – 8, 20, 28, 50, 82 und 126 – have been well established for stable nuclei. In the case of exotic systems with short half-lives, however, present knowledge is very limited.
In order to improve the description, theoretical physicists from the Technical University of Darmstadt included three-body forces, which are determined by fits to the lightest elements, hydrogen and helium, only. Calculations at the Jülich Supercomputing Centre enabled them to predict the masses of much heavier calcium isotopes. Besides the known neutron shell closures at 20 and 28 the predictions for the masses show that 32 is an additional magic number.

Atomic nuclei, in which there is an extreme imbalance with respect to the numbers of protons and neutrons, are particularly sensitive to subtle components of nuclear forces. However, measuring such nuclei is extraordinarily difficult, because they can only be produced in tiny numbers and decay immediately, within the blink of an eye. Such particles are delivered as ion beams to the precision mass balance ISOLTRAP by the “isotope factory” ISOLDE at the European research centre CERN.

However, there is another challenge as the ions of interest are in general generated only together with “contaminations”, i.e. particles of similar masses, so-called isobars. Under these conditions Penning ion traps, up to now the micro scales of choice, reach their limits. Multi-reflection time-of-flight mass spectrometers offer an alternative. Such an instrument was provided by the team from the University of Greifswald and installed as part of the ISOLTRAP setup.

After a recent application as a high-resolution mass separator for Penning-trap investigations (see idw press release “Laboratory Mass Measurement deepens Insight into Neutron Star Crusts“ http://idw-online.de/en/news516628) the new device was successfully used to obtain the first mass measurements of calcium-53 and calcium-54.

The principle of time-of-flight mass spectrometry is rather simple: All ions experience the same force and are therefore accelerated to different velocities corresponding to their masses. Thus, after crossing a drift section they reach a detector one after the other – the light ones first and the heavier later. The result is a time-of-flight mass spectrum. Typical drift sections have a length of about a meter. But there is a trick: By use of an “ion mirror” the particles can be reflected and if a second mirror is added drift sections of several kilometres in length can be folded to table-top dimensions.

The ion ping pong of reflecting the particles several thousand times back and forth lasts only a few milliseconds. The procedure is much faster than the Penning-trap experiments and, in addition, needs fewer ions. This was the breakthrough, which allowed the confirmation of the predictions for the exotic calcium isotopes of the Darmstadt theory group. The successful application of the instrument from Greifswald establishes multi-reflection time-of-flight mass spectrometry as a next generation technology for the investigation of atomic nuclei.

The ion-trap setup ISOLTRAP was operated by researchers from CERN, the Max Planck Institute for Nuclear Physics at Heidelberg, the GSI Helmholtz Centre for Heavy Ion Research at Darmstadt as well as from universities at Dresden, Greifswald, Istanbul (Turkey), Leuven (Belgium) and Orsay (France).
Original publication: http://dx.doi.org/10.1038/nature12226
Masses of exotic calcium isotopes pin down nuclear forces
F. Wienholtz, D. Beck, K. Blaum, Ch. Borgmann, M. Breitenfeldt, R.B. Cakirli, S. George, F. Herfurth, J.D. Holt, M. Kowalska, S. Kreim, D. Lunney, V. Manea, J. Menendez, D. Neidherr, M. Rosenbusch, L. Schweikhard, A. Schwenk, J. Simonis, J. Stanja, R. N. Wolf, K. Zuber, Nature 498 (2013)
Contacts

Dipl.-Phys. Frank Wienholtz and Prof. Dr. Lutz Schweikhard
Institute of Physics of the Ernst-Moritz-Arndt University Greifswald
Felix-Hausdorff-Str. 6, 17487 Greifswald, Germany
Telephone +49 3834 86-4700
wienholtz@physik.uni-greifswald.de
lschweik@physik.uni-greifswald.de
http://www6.physik.uni-greifswald.de/index.html
Prof. Dr. Achim Schwenk
Institut für Kernphysik, Theoriezentrum
Technische Universität Darmstadt
Schlossgartenstr. 2, 64289 Darmstadt, Germany
Telephone +49 6151 16-64235
schwenk@physik.tu-darmstadt.de
http://theorie.ikp.physik.tu-darmstadt.de/strongint/
Spokesperson of the ISOLTRAP collaboration
Prof. Dr. Klaus Blaum
Max Planck Institute for Nuclear Physics
Saupfercheckweg 1, 69117 Heidelberg, Germany
Telephone +49 6221 516850
klaus.blaum@mpi-hd.mpg.de
http://www.mpi-hd.mpg.de/blaum/index.de.html

ISOLTRAP’s local coordinator at CERN
Dr. Susanne Kreim
CERN, bat. 3-1-070, 1211 Geneva 23, Switzerland
Telephone +41 22 7672646
susanne.waltraud.kreim@cern.ch
http://isoltrap.web.cern.ch/

Jan Meßerschmidt | idw
Further information:
http://dx.doi.org/10.1038/nature12226
http://www.uni-greifswald.de

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>