Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ion ping pong reveals forces in atomic nuclei

20.06.2013
An international team of scientists has succeeded in determining the binding energies of exotic atomic nuclei by use of a multi-reflection time-of-flight mass spectrometer.

As reported in the journal Nature, important conclusions about the nature of the forces between the protons and neutrons in nuclei can be drawn by comparing the experimental results and new theoretical values. The difficult measurements were made possible by an extension to the precision experiment ISOLTRAP at the European research centre CERN.


Ion ping pong.
Figure: Frank Wienholtz


Schematic Overview of the new ISOLTRAP component for multi-reflection time-of-flight mass spectrometry. The ions are reflected back and forth between the “mirrors” whereby the different ion species are separated. Figure: Frank Wienholtz

The new component, contributed by physicists from the University of Greifswald, reflects ions back and forth like in a ping pong game. Using this method the team was the first to determine the masses of the artificially produced isotopes calcium-53 and calcium-54.

These isotopes play a key role in basic research in nuclear physics. The measurements confirm predictions by theorists from the Technical University of Darmstadt that also account for three-body forces.

From the masses of atomic nuclei one can deduce – via Einstein‘s equation E=mc2 – the energies with which protons and neutrons are bound in the nucleus. Particularly high binding energies are found for nuclei with “magic“ proton and neutron numbers. These special values – 8, 20, 28, 50, 82 und 126 – have been well established for stable nuclei. In the case of exotic systems with short half-lives, however, present knowledge is very limited.
In order to improve the description, theoretical physicists from the Technical University of Darmstadt included three-body forces, which are determined by fits to the lightest elements, hydrogen and helium, only. Calculations at the Jülich Supercomputing Centre enabled them to predict the masses of much heavier calcium isotopes. Besides the known neutron shell closures at 20 and 28 the predictions for the masses show that 32 is an additional magic number.

Atomic nuclei, in which there is an extreme imbalance with respect to the numbers of protons and neutrons, are particularly sensitive to subtle components of nuclear forces. However, measuring such nuclei is extraordinarily difficult, because they can only be produced in tiny numbers and decay immediately, within the blink of an eye. Such particles are delivered as ion beams to the precision mass balance ISOLTRAP by the “isotope factory” ISOLDE at the European research centre CERN.

However, there is another challenge as the ions of interest are in general generated only together with “contaminations”, i.e. particles of similar masses, so-called isobars. Under these conditions Penning ion traps, up to now the micro scales of choice, reach their limits. Multi-reflection time-of-flight mass spectrometers offer an alternative. Such an instrument was provided by the team from the University of Greifswald and installed as part of the ISOLTRAP setup.

After a recent application as a high-resolution mass separator for Penning-trap investigations (see idw press release “Laboratory Mass Measurement deepens Insight into Neutron Star Crusts“ http://idw-online.de/en/news516628) the new device was successfully used to obtain the first mass measurements of calcium-53 and calcium-54.

The principle of time-of-flight mass spectrometry is rather simple: All ions experience the same force and are therefore accelerated to different velocities corresponding to their masses. Thus, after crossing a drift section they reach a detector one after the other – the light ones first and the heavier later. The result is a time-of-flight mass spectrum. Typical drift sections have a length of about a meter. But there is a trick: By use of an “ion mirror” the particles can be reflected and if a second mirror is added drift sections of several kilometres in length can be folded to table-top dimensions.

The ion ping pong of reflecting the particles several thousand times back and forth lasts only a few milliseconds. The procedure is much faster than the Penning-trap experiments and, in addition, needs fewer ions. This was the breakthrough, which allowed the confirmation of the predictions for the exotic calcium isotopes of the Darmstadt theory group. The successful application of the instrument from Greifswald establishes multi-reflection time-of-flight mass spectrometry as a next generation technology for the investigation of atomic nuclei.

The ion-trap setup ISOLTRAP was operated by researchers from CERN, the Max Planck Institute for Nuclear Physics at Heidelberg, the GSI Helmholtz Centre for Heavy Ion Research at Darmstadt as well as from universities at Dresden, Greifswald, Istanbul (Turkey), Leuven (Belgium) and Orsay (France).
Original publication: http://dx.doi.org/10.1038/nature12226
Masses of exotic calcium isotopes pin down nuclear forces
F. Wienholtz, D. Beck, K. Blaum, Ch. Borgmann, M. Breitenfeldt, R.B. Cakirli, S. George, F. Herfurth, J.D. Holt, M. Kowalska, S. Kreim, D. Lunney, V. Manea, J. Menendez, D. Neidherr, M. Rosenbusch, L. Schweikhard, A. Schwenk, J. Simonis, J. Stanja, R. N. Wolf, K. Zuber, Nature 498 (2013)
Contacts

Dipl.-Phys. Frank Wienholtz and Prof. Dr. Lutz Schweikhard
Institute of Physics of the Ernst-Moritz-Arndt University Greifswald
Felix-Hausdorff-Str. 6, 17487 Greifswald, Germany
Telephone +49 3834 86-4700
wienholtz@physik.uni-greifswald.de
lschweik@physik.uni-greifswald.de
http://www6.physik.uni-greifswald.de/index.html
Prof. Dr. Achim Schwenk
Institut für Kernphysik, Theoriezentrum
Technische Universität Darmstadt
Schlossgartenstr. 2, 64289 Darmstadt, Germany
Telephone +49 6151 16-64235
schwenk@physik.tu-darmstadt.de
http://theorie.ikp.physik.tu-darmstadt.de/strongint/
Spokesperson of the ISOLTRAP collaboration
Prof. Dr. Klaus Blaum
Max Planck Institute for Nuclear Physics
Saupfercheckweg 1, 69117 Heidelberg, Germany
Telephone +49 6221 516850
klaus.blaum@mpi-hd.mpg.de
http://www.mpi-hd.mpg.de/blaum/index.de.html

ISOLTRAP’s local coordinator at CERN
Dr. Susanne Kreim
CERN, bat. 3-1-070, 1211 Geneva 23, Switzerland
Telephone +41 22 7672646
susanne.waltraud.kreim@cern.ch
http://isoltrap.web.cern.ch/

Jan Meßerschmidt | idw
Further information:
http://dx.doi.org/10.1038/nature12226
http://www.uni-greifswald.de

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>