Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigating unusual three-ribbon solar flares with extreme high resolution

04.06.2014

The 1.6 meter telescope at Big Bear Solar Observatory (BBSO) in California has given researchers unparalleled capability for investigating phenomena such as solar flares. Operated by New Jersey Institute of Technology (NJIT), the BBSO instrument is the most powerful ground-based telescope dedicated to studying the star closest to Earth.

On June 2, Distinguished Professor of Physics Haimin Wang joined NJIT colleagues at the 224th meeting of the American Astronomical Society (AAS), held in Boston, Massachusetts, to present intriguing data about solar flares — specifically, two successive three-ribbon solar flares observed on July 6, 2012.

The events were recorded by Wenda Cao, associate professor of Physics at NJIT, BBSO associate director, and a co-author of the paper presented. Flares with two ribbons are typical of these immensely powerful eruptions that can send storms of charged particles and high-energy radiation toward Earth at nearly the speed of light.

The research Wang described at the AAS meeting integrated data acquired with the BBSO telescope at the hydrogen H-alpha spectral line and Calcium II H images captured with instrumentation aboard NASA's Hinode satellite. The flaring site observed was characterized by an unusual "fish-bone-like" morphology evidenced by both H-alpha images and a nonlinear force-free field (NLFFF) extrapolation, where two semi-parallel rows of low-lying, sheared loops connected an elongated, parasitic negative field with sandwiching positive fields.

The NLFFF model also showed the two rows of loops to be asymmetric in height with opposite twists, and to be enveloped by large-scale field lines, including open fields. The two flares occurred in succession within half an hour and were located at the two ends of the flaring region. The three ribbons of each flare were parallel to the magnetic polarity inversion line, with the outer two lying in the positive field and the central one in the negative field.

Both flares showed surge-like flows in the H-alpha images presented by Wang, apparently toward the remote region. One of the flares also was accompanied by jets of extreme ultraviolet radiation, possibly along the open field lines. Interestingly, the 12-25 keV hard X-ray sources of the flare first lined up with the central ribbon and then shifted to concentrate on top of the higher branch of loops. The results Wang discussed also suggest that the phenomenon of magnetic reconnection along the coronal null line is involved in producing the three flare ribbons and associated coronal mass ejections.

At NJIT, Wang also is director of the university's Space Weather Research Laboratory, based on campus in Newark, New Jersey. Under Wang's direction, the laboratory uses data from BBSO, the NJIT radio observatory in Owens Valley, California, NASA spacecraft and observatories in other countries to provide information about prevailing solar weather and what's ahead in the near future.

Operating the Global High Resolution H-alpha Network, Wang and his laboratory colleagues monitor solar activity and report space weather 24/7. In addition, they are working to further fundamental understanding of solar activity and geomagnetic effects. Better forecasting of solar events is a chief objective.

Beyond NJIT, Wang is leading a research team under NASA's Living With a Star program focused on gaining new knowledge about solar flares, the source of space weather. Another project on Wang's agenda "looks back to the future." It involves converting images from Big Bear and other observatories archived only as photographs into more accessible digital formats. This will give all researchers investigating the solar cycle and flare activity access to high-quality data extending over a century.

###

Funding for the research Wang presented on June 2 at the AAS meeting has been provided mainly by NASA through the Living With a Star program and partially by NSF.

The results of this investigation submitted to The Astrophysical Journal Letters are available at http://iopscience.iop.org/2041-8205/781/1/L23.

For more information, including images and video, visit http://bbso.njit.edu.

Visit the NJIT Space Weather Research Laboratory at http://swrl.njit.edu.

Contact:

Haimin Wang
Haimin.wang@njit.edu, (973) 596-5781
Home page: http://solar.njit.edu/~haimin

About NJIT

NJIT, New Jersey's science and technology university, enrolls 10,000 students pursuing bachelor's, master's and doctoral degrees in 120 programs. The university consists of six colleges: Newark College of Engineering, College of Architecture and Design, College of Science and Liberal Arts, School of Management, College of Computing Sciences and Albert Dorman Honors College. U.S. News & World Report's 2011 Annual Guide to America's Best Colleges ranked NJIT in the top tier of national research universities. NJIT is internationally recognized for being at the edge in knowledge in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning. Many courses and certificate programs, as well as graduate degrees, are available online through the Division of Continuing Professional Education.

Tanya Klein | Eurek Alert!

Further reports about: BBSO H-alpha NASA NJIT Physics activity flares solar cycle surge-like flows

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>