Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigating unusual three-ribbon solar flares with extreme high resolution

04.06.2014

The 1.6 meter telescope at Big Bear Solar Observatory (BBSO) in California has given researchers unparalleled capability for investigating phenomena such as solar flares. Operated by New Jersey Institute of Technology (NJIT), the BBSO instrument is the most powerful ground-based telescope dedicated to studying the star closest to Earth.

On June 2, Distinguished Professor of Physics Haimin Wang joined NJIT colleagues at the 224th meeting of the American Astronomical Society (AAS), held in Boston, Massachusetts, to present intriguing data about solar flares — specifically, two successive three-ribbon solar flares observed on July 6, 2012.

The events were recorded by Wenda Cao, associate professor of Physics at NJIT, BBSO associate director, and a co-author of the paper presented. Flares with two ribbons are typical of these immensely powerful eruptions that can send storms of charged particles and high-energy radiation toward Earth at nearly the speed of light.

The research Wang described at the AAS meeting integrated data acquired with the BBSO telescope at the hydrogen H-alpha spectral line and Calcium II H images captured with instrumentation aboard NASA's Hinode satellite. The flaring site observed was characterized by an unusual "fish-bone-like" morphology evidenced by both H-alpha images and a nonlinear force-free field (NLFFF) extrapolation, where two semi-parallel rows of low-lying, sheared loops connected an elongated, parasitic negative field with sandwiching positive fields.

The NLFFF model also showed the two rows of loops to be asymmetric in height with opposite twists, and to be enveloped by large-scale field lines, including open fields. The two flares occurred in succession within half an hour and were located at the two ends of the flaring region. The three ribbons of each flare were parallel to the magnetic polarity inversion line, with the outer two lying in the positive field and the central one in the negative field.

Both flares showed surge-like flows in the H-alpha images presented by Wang, apparently toward the remote region. One of the flares also was accompanied by jets of extreme ultraviolet radiation, possibly along the open field lines. Interestingly, the 12-25 keV hard X-ray sources of the flare first lined up with the central ribbon and then shifted to concentrate on top of the higher branch of loops. The results Wang discussed also suggest that the phenomenon of magnetic reconnection along the coronal null line is involved in producing the three flare ribbons and associated coronal mass ejections.

At NJIT, Wang also is director of the university's Space Weather Research Laboratory, based on campus in Newark, New Jersey. Under Wang's direction, the laboratory uses data from BBSO, the NJIT radio observatory in Owens Valley, California, NASA spacecraft and observatories in other countries to provide information about prevailing solar weather and what's ahead in the near future.

Operating the Global High Resolution H-alpha Network, Wang and his laboratory colleagues monitor solar activity and report space weather 24/7. In addition, they are working to further fundamental understanding of solar activity and geomagnetic effects. Better forecasting of solar events is a chief objective.

Beyond NJIT, Wang is leading a research team under NASA's Living With a Star program focused on gaining new knowledge about solar flares, the source of space weather. Another project on Wang's agenda "looks back to the future." It involves converting images from Big Bear and other observatories archived only as photographs into more accessible digital formats. This will give all researchers investigating the solar cycle and flare activity access to high-quality data extending over a century.

###

Funding for the research Wang presented on June 2 at the AAS meeting has been provided mainly by NASA through the Living With a Star program and partially by NSF.

The results of this investigation submitted to The Astrophysical Journal Letters are available at http://iopscience.iop.org/2041-8205/781/1/L23.

For more information, including images and video, visit http://bbso.njit.edu.

Visit the NJIT Space Weather Research Laboratory at http://swrl.njit.edu.

Contact:

Haimin Wang
Haimin.wang@njit.edu, (973) 596-5781
Home page: http://solar.njit.edu/~haimin

About NJIT

NJIT, New Jersey's science and technology university, enrolls 10,000 students pursuing bachelor's, master's and doctoral degrees in 120 programs. The university consists of six colleges: Newark College of Engineering, College of Architecture and Design, College of Science and Liberal Arts, School of Management, College of Computing Sciences and Albert Dorman Honors College. U.S. News & World Report's 2011 Annual Guide to America's Best Colleges ranked NJIT in the top tier of national research universities. NJIT is internationally recognized for being at the edge in knowledge in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning. Many courses and certificate programs, as well as graduate degrees, are available online through the Division of Continuing Professional Education.

Tanya Klein | Eurek Alert!

Further reports about: BBSO H-alpha NASA NJIT Physics activity flares solar cycle surge-like flows

More articles from Physics and Astronomy:

nachricht Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'
26.07.2016 | NASA/Goddard Space Flight Center

nachricht Lonely Atoms, Happily Reunited
26.07.2016 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

World first demo of labyrinth magnetic-domain-optical Q-switched laser

28.07.2016 | Information Technology

New material could advance superconductivity

28.07.2016 | Materials Sciences

CO2 can be stored underground for 10 times the length needed to avoid climatic impact

28.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>