Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Introducing the 'A-Train'

28.10.2010
Mention the "A-Train" and most people probably think of the jazz legend Billy Strayhorn or perhaps New York City subway trains — not climate change. However, it turns out that a convoy of "A-Train" satellites has emerged as one of the most powerful tools scientists have for understanding our planet's changing climate.

The formation of satellites — which currently includes Aqua, CloudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and Aura satellites — barrels across the equator each day at around 1:30 p.m. local time each afternoon, giving the constellation its name; the "A" stands for "afternoon."

Together, these four satellites contain 15 separate scientific instruments that observe the same path of Earth's atmosphere and surface at a broad swath of wavelengths. At the front of the train, Aqua carries instruments that produce measurements of temperature, water vapor, and rainfall. Next in line, CloudSat, a cooperative effort between NASA and the Canadian Space Agency (CSA), and CALIPSO, a joint effort of the French space agency Centre National d'Etudes Spatiales (CNES) and NASA, have high-tech laser and radar instruments that offer three-dimensional views of clouds and airborne particles called aerosols. And the caboose, Aura, has a suite of instruments that produce high-resolution vertical maps of greenhouse gases, among many other atmospheric constituents.

In coming months, the A-Train will expand with the launch of NASA's aerosol-sensing Glory satellite and the carbon-tracking Orbiting Carbon Observatory 2 (OCO-2) satellite. In 2010, the Japan Aerospace Exploration Agency (JAXA) plans to launch the Global Change Observation Mission-Water (GCOM-W1), which will monitor ocean circulation. Meanwhile, a fifth satellite, France's Polarization and Anistropy of Reflectances for Atmospheric Science coupled with Observations from a Lidar (PARASOL), which studies aerosols, is easing out of an A-Train orbit as its fuel supplies dwindles.

Accidental Origins

This multi-sensor view allows scientists to simultaneously observe changes in key environmental phenomenon – such as clouds or ice sheets – from numerous perspectives. And it helps skirt around engineering obstacles that would have made it impossible to cluster all 15 instruments on one large spacecraft.

But it wasn't necessarily planned that way. Formation flying is a fairly novel concept, and it came to the fore partly by accident. The concept of an A-Train first emerged when scientists and engineers were hashing out the orbit of Aura, which launched in 2004. At the time, rather than calculating a whole new orbital plan for Aura, flight engineers realized they could simply model its orbit after Aqua, a sister satellite NASA had launched in 2002.

They went forward with that plan, but limitations in data transmissions rates, meant that the two satellites ended up flying much closer to each other than originally planned. In the end, they decided that Aura would fly about 6,300 kilometers – a mere 15 minutes of flight – behind Aqua.

Meanwhile, two additional satellites that study minute airborne particles called aerosols and clouds – the CALIPSO and CloudSat – without realizing it had requested nearly identical orbits near Aura because the scientists involved with these missions wanted to compare their results with the humidity and cloud measurements coming from Aura. In 2006, CloudSat and CALIPSO eased into the train behind Aura just 93 kilometers – about 12.5 seconds – from one another. As a result, CALIPSO's lidar beam and CloudSat's radar have coincided at Earth's surface about ninety percent of the time they have been in orbit.

Reaping the Rewards

The longer the A-Train has existed, the more scientists have begun to appreciate its potential. Indeed, scientists representing all the A-Train satellites are meeting this week in New Orleans to compare notes and to sketch out plans for future cross-satellite collaboration. Leading earth scientists from three national space agencies, including the director of NASA's Earth Science Division Michael Freilich, Didier Renaut from CNES and Haruhisa Shimoda of JAXA, are giving talks about A-Train science. And scientists from dozens of institutions are presenting research on topics ranging from air quality, to the carbon cycle, to cloud dynamics.

There is a great deal to discuss. Multi-sensor measurements from the A-Train, for example, have proven critical in working out why the summer of 2007 experienced the greatest loss of Arctic sea ice in history. A-Train sensors captured environmental conditions during the loss – which was far greater than climate models had predicted – allowing scientists to go back after the fact to pinpoint its causes. By now, they have proven that some unexpected factors, such as anomalously high winds and an sharp decrease in cloudiness, fueled the rapid loss, in addition to more predictable culprits such as high air temperatures and low humidity.

Likewise, synergistic A-Train measurements have yielded great insight into aerosols – small airborne particles such as dust, sea salt, and soot. Depending on their composition, aerosols can scatter and or absorb the sun's heat, and can thus both warm and cool the planet. Some types of aerosols also seed clouds, A-Train sensors have helped reveal, and can change cloud behavior. A-Train instruments aboard Aura and Aqua, for example, produced groundbreaking insight about aerosols and ice clouds, making it possible for scientists to prove that polluted ice clouds have smaller particles and are therefore much less likely to produce rain.

Still, pressing questions about our climate remain. What is the overall affect of aerosols and clouds on climate? How much carbon is absorbed by forests? How will the monsoon cycle react to a warming world? To what extent will a changing climate change the size and strength of hurricanes? And what feedback cycles will encourage or discourage climate change? These and many more questions still need answers, and now that the power of formation flying is clear, it is a good bet that A-Train satellites will play a key role in answering them.

Written by:
Adam Voiland
NASA's Earth Science News Team

Adam Voiland | EurekAlert!
Further information:
http://www.nasa.gov/mission_pages/a-train/a-train.html#

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>