Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International team solves mystery of colloidal chains

15.05.2017

Team discovers fast, simple way to create two-dimensional electronic circuits

When Northwestern Engineering's Erik Luijten met Zbigniew Rozynek, they immediately became united by a mystery.


Particles are pulled out of a dispersion to form a 'pearl necklace', by applying an electric field through a needle-shaped electrode.

Credit: Ming Han

Presenting at a conference in Norway, Rozynek, a researcher at Adam Mickiewicz University in Pozna?, Poland, demonstrated something that looked almost like magic. When he poked a needle-shaped electrode into a mixture of micron-sized, spherical metal particles dispersed in silicone oil, a sphere stuck to its end. As Rozynek pulled the electrode out of the dispersion, another sphere attached to the first sphere, and then another to the second sphere, and so on, until a long chain formed.

"The spheres behaved like magnetic beads, except no magnetism was involved," said Luijten, professor of materials science and engineering and of engineering and applied mathematics at Northwestern's McCormick School of Engineering. "The particles have no tendency to cluster. I realized that something more complicated was happening."

Rozynek, along with his collaborators Filip Dutka, Piotr Garstecki, and Arkadiusz Józefczak, and Luijten joined their teams to understand the phenomenon that caused these chains to form. Their resulting discovery could lead to a new generation of electronic devices and a fast, simple method to write two-dimensional electronic circuits.

"Our scientific results could open up other areas for future research -- both fundamental and applied," Rozynek said. "We are already working on follow-up projects based on our discovery."

Supported by the Foundation for Polish Science, Polish National Science Centre, and the US National Science Foundation, the research was published online today in the journal Nature Communications. Rozynek and Luijten are co-corresponding authors. Rozynek is also co-first author with Ming Han, a PhD student in Luijten's Computational Soft Matter Lab.

Rozynek and Han performed multiple calculations, showing how the electrode's electric field changed the particles' properties. When the electrode is dipped into the colloidal solution, its charged tip polarizes each sphere. These induced dipolar interactions cause the spheres to link together. A resulting chain could contain hundreds of thousands of spheres, reaching up to 30 centimeters in length.

After the team solved the mystery of how the chains formed, it had a second mystery to tackle. "Another fascinating part is that once we pulled the chain out of the liquid, we no longer had to apply an electric field to hold the chain's structure," Han said. "After the field was turned off, the stable particle chain remained stable."

Following months of investigation, Luijten and Rozynek's teams discovered that the chains maintained their structures due to liquid "bridges" between adjacent particles. As researchers pulled the chain out of the liquid, silicone oil clung to the sides of each particle, forming a case around the entire chain and keeping it intact.

"Surface tension plays a big role here," Han said. "The liquid bridge made the particles stick together. The physics here is really interesting. Most people would think that if you wanted to hold the structure, then you would need to apply the electric field. But that is not needed in our system."

Once the flexible chain is pulled out of the liquid, it can be immediately dragged along a surface and deposited to create a pattern. The researchers believe this method could be used as an alternative way to create simple, two-dimensional electronic circuits. If molten wax is used instead of silicone oil, then the method could also be used to build three-dimensional structures that hold their shapes when the wax cools and hardens.

"Though simple, our method for fabricating colloidal structures is very elegant and can be used for many applications," Rozynek said, "including fabrication of conductive paths on different substrates to be used, for example, in electronic applications."

Luijten and Rozynek believe that solving this mystery could potentially open the door for applications that they cannot predict today. By understanding how the method works, they can better assess how different types of fluids or voltage levels could affect the chains and change the outcome.

"Understanding how it works makes it so much easier to manipulate and optimize," Luijten said. "We can say if the method will work better or worse if the particles are larger or if the electric field is stronger. That's only possible because we understand it. Otherwise, you would have to examine an endless set of combinations."

Megan Fellman | EurekAlert!

More articles from Physics and Astronomy:

nachricht Researching the LED Wallpaper of the Future
23.02.2018 | Universität Bremen

nachricht Magnetic field traces gas and dust swirling around supermassive black hole
22.02.2018 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>