Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International team of physicists makes discovery about temperature in convection

18.09.2012
An international team of physicists is working to ascertain more about the fundamental physical laws that are at work in a process known as convection, which occurs in a boiling pot of water as well as in the turbulent movement of the liquid outer core of the Earth.

The team's new finding specifies the way that the temperature of a gas or liquid varies with the distance from a heat source during convection. The research is expected to eventually help engineers with applications such as the design of cooling systems, for instance, in nuclear power plants.


This is a drawing of the container used to study convection. The 8-foot tall cylinder was heated at the bottom and cooled at the top.

Credit: UCSB

Guenter Ahlers, professor of physics at UC Santa Barbara, worked with his team at the Max Planck Institute for Dynamics and Self-Organization in Goettingen, Germany, on this important discovery about turbulent convection. The results will be published in the September 7 issue of Physical Review Letters, and are available online now.

The experiments took place in a cylinder that was placed under the turret of a large pressure container. The 8-foot tall cylinder was heated at the bottom and cooled at the top. There were about 100 thermometers inside it, and it was pressurized with sulfur hexafluoride, an inert gas. Convection occurred inside the cylinder because, in the presence of gravity, the warmer gas at the bottom tends to rise to the top, while the colder gas tends to sink.

"We like sulfur hexafluoride because it is harmless –– not poisonous, not chemically reacting –– and because it is a heavy molecule," said Ahlers. "A heavy molecule enables us to produce more vigorous convection with the same temperature difference. The strength of the convection is measured by a parameter called the Rayleigh number. We go to Rayleigh numbers as high as 10 to the 15 –– a million billion –– which is very large by our standards."

Ahlers enjoys the ability to oversee and even run the continuing experiments remotely on a computer in his office at UCSB (or anywhere else in the world), even though the laboratory is 5,000 miles away.

He explained that convection occurs naturally in astrophysics and in Earth systems. For example, the outer layer of the sun is composed of convection cells. Convection occurs in the Earth's atmosphere and oceans. The liquid iron in the outer core of the Earth undergoes vigorous convection and has Rayleigh numbers well above 10 to the 20. That convection generates the magnetic field of the Earth.

In their paper, the scientists present experimental and numerical data that show that, except for a very thin layer in the immediate vicinity of the plates, the temperature of this system varies linearly with the logarithm of the distance from the confining plates. They discovered this profile and measured it in detail.

The findings are especially intriguing because they echo an important discovery from 1930 by Theodore von Kármán and Ludwig Prandtl, known as the "Law of the Wall." This discovery involved the study of a gas or liquid flowing along a wall, where its speed must be zero at the wall because of friction. The speed of the fluid parallel to the wall increases as the distance from the wall increases. Von Kármán and Prandtl showed more specifically that the speed increases linearly with the logarithm of this distance when the flow is fast enough so that the fluid becomes turbulent. This result is called the Law of the Wall and is of great importance in many engineering applications.

Ahlers compared the new findings about the way temperature varies in convection to the way speed varies with the Law of the Wall, noting that they are similar, although the precise relationship has yet to be understood. "They behave in the same way," said Ahlers. "But just because two things look the same doesn't mean they are the same, so we still need to build the theoretical foundation that connects them. That's what makes this a very active, very exciting field, with theorists as far apart as Beijing (China), Marburg (Germany), and Twente (the Netherlands) already trying to explain the experimental results. You make an experimental discovery, and then theorists get excited. Then they start working on it, and who knows what we will have six months down the road?"

He explained how the Law of the Wall is of importance in engineering applications. "Pumping oil from Alaska down to the United States costs billions of dollars," said Ahlers. "And if you can understand what causes the resistance that you have to overcome, then maybe you can reduce that. Even if you only reduce it by 2 or 3 percent, you've saved hundreds of millions. So it's very, very important."

Ahlers went on to say that understanding the temperature in turbulent convection is also very important because there are many applications where turbulent convection is used to cool things. In nuclear reactors, for instance, cooling is done by turbulent convection. "There are many applications of this turbulent convection system in industry, where you would also like to understand what's going on inside, what the temperature gradients are," he said. "So I can see relevance for this in applications. Although I must say that is not our motivation; our motivation is to understand the fundamental physics."

Eberhard Bodenschatz, one of the authors, was a postdoctoral fellow with Ahlers at UCSB about 20 years ago and is now director of the Max Planck Institute for Dynamics and Self-Organization in Goettingen. Co-author Xiaozhou He is a postdoctoral fellow with Ahlers and is based in Goettingen. Scientists from The Netherlands, Italy, and France are also involved.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>