Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International team of scientists unveils fundamental properties of spin Seebeck effect

29.07.2016

Direct correlation between temperature dependent generation of spin currents and atomic composition of interfaces found

Thermoelectric effects are a fundamental building block for the conception and development of new processes for information processing. They enable to re-use waste heat obtained in different processes for the operation of respective devices and thus contribute to the establishment of more energy-efficient, ecofriendly processes. A promising representative of this effect category is the so-called spin Seebeck effect, which became prominent within recent years. This effect allows to convert waste heat into spin currents and thereby to transport energy as well as information in magnetic, electrically insulating materials. Physicists of Johannes Gutenberg University Mainz (JGU) in Germany together with their colleagues from Glasgow University in Scotland now succeeded to reveal essential properties of this yet to be fully understood effect. Their findings contribute to a more thorough understanding of the underlying processes of this effect and thereby support its further development for first applications. The research work has been published in the journal Physical Review X.


Thermally excited spin waves carry a spin current from the ferromagnet (YIG in this case) into the metal layer. Depending on the YIG thickness and the interface condition the amplitude of the spin current as well as transmission properties change.

ill/©: Joel Cramer, JGU

The spin Seebeck effect belongs to the category of spin-thermoelectric effects. Previous work of the physicists at Mainz University in collaboration with colleagues from the University of Konstanz and the Massachusetts Institute of Technology (MIT) has shown that the creation of a thermal non-equilibrium leads to the creation of magnetic waves, so-called magnons, within magnetic materials. These transport both energy and torque and thus are able to induce a voltage signal in adjacent metal thin films.

By means of material-dependent measurements over a wide temperature range and with a varied thickness of the employed magnetic material, a direct correlation between the amplitude of the voltage signal and the intrinsic properties of magnons was/could be identified. Furthermore, it was/could be shown that the temperature dependence of the voltage generation efficiency additionally depends strongly on the atomic structure of the interface between magnetic material and metal thin film.

"Step by step answers to the open questions about the fundamental processes of the spin Seebeck effect are given. Our results yield an essential contribution for the development of the aspiring field of Magnon Spintronics", said Joel Cramer, co-author of the publication and stipend of the Graduate School of Excellence "Materials Science in Mainz" (MAINZ).

Professor Mathias Kläui added: "I am very glad that by means of the intensive collaboration with our colleagues we were able to correlate the transport of spins with the microscopic, atomistic structure. The cooperation with our colleagues from Glasgow already led to several mutual publications and an active exchange with leading groups from abroad is one of the central measures of our Graduate School of Excellence."

Establishment of the MAINZ Graduate School was approved through the Excellence Initiative by the German Federal and State Governments to Promote Science and Research at German Universities in 2007 and its funding was extended in the second round in 2012. It consists of work groups from Johannes Gutenberg University Mainz, TU Kaiserslautern, and the Max Planck Institute for Polymer Research in Mainz. One of its focal research areas is spintronics, where cooperation with leading international partners plays an important role.

Publication:
Er-Jia Guo et al.
Influence of thickness and interface on the low-temperature enhancement of the spin Seebeck effect in YIG films
Physical Review X 6, 031012 (2016)
DOI: 10.1103/PhysRevX.6.031012


Further information:
Professor Dr. Mathias Kläui
Condensed Matter Theory Group
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23633
e-mail: klaeui@uni-mainz.de
http://www.klaeui-lab.physik.uni-mainz.de/308.php

Graduate School of Excellence Materials Science in Mainz (MAINZ)
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-26984
fax +49 6131 39-26983
e-mail: mainz@uni-mainz.de
http://www.mainz.uni-mainz.de/

Weitere Informationen:

http://journals.aps.org/prx/abstract/10.1103/PhysRevX.6.031012 – Article in Physical Review X ;
http://www.uni-mainz.de/presse/20114_ENG_HTML.php – press release "Researchers present new findings on magnetic spin waves", 10 Feb. 2016 ;
http://www.uni-mainz.de/presse/19572_ENG_HTML.php – press release "Indications of the origin of the spin Seebeck effect discovered", 7 Sept. 2015

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>