Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International team demonstrates subatomic quantum memory in diamond

28.06.2011
Physicists working at the University of California, Santa Barbara and the University of Konstanz in Germany have developed a breakthrough in the use of diamond in quantum physics, marking an important step toward quantum computing. The results are reported in this week's online edition of Nature Physics.

The physicists were able to coax the fragile quantum information contained within a single electron in diamond to move into an adjacent single nitrogen nucleus, and then back again using on-chip wiring.

"This ability is potentially useful to create an atomic-scale memory element in a quantum computer based on diamond, since the subatomic nuclear states are more isolated from destructive interactions with the outside world," said David Awschalom, senior author. Awschalom is director of UCSB's Center for Spintronics & Quantum Computation, professor of physics, electrical and computer engineering, and the Peter J. Clarke director of the California NanoSystems Institute.

Awschalom said the discovery shows the high-fidelity operation of a quantum mechanical gate at the atomic level, enabling the transfer of full quantum information to and from one electron spin and a single nuclear spin at room temperature. The process is scalable, and opens the door to new solid-state quantum device development.

Scientists have recently shown that it is possible to synthesize thousands of these single electron states with beams of nitrogen atoms, intentionally creating defects to trap the single electrons. "What makes this demonstration particularly exciting is that a nitrogen atom is a part of the defect itself, meaning that these sub-atomic memory elements automatically scale with the number of logical bits in the quantum computer," said lead author Greg Fuchs, a postdoctoral fellow at UCSB.

Rather than using logical elements like transistors to manipulate digital states like "0" or "1," a quantum computer needs logical elements capable of manipulating quantum states that may be "0" and "1" at the same time. Even at ambient temperature, these defects in diamond can do exactly that, and have recently become a leading candidate to form a quantum version of a transistor.

However, there are still major challenges to building a diamond-based quantum computer. One of these is finding a method to store quantum information in a scalable way. Unlike a conventional computer, where the memory and the processor are in two different physical locations, in this case they are integrated together, bit-for-bit.

"We knew that the nitrogen nuclear spin would be a good choice for a scalable quantum memory –– it was already there," said Fuchs. "The hard part was to transfer the state quickly, before it is lost to decoherence."

Awschalom explained: "A key breakthrough was to use a unique property of quantum physics –– that two quantum objects can, under special conditions, become mixed to form a new composite object." By mixing the quantum spin state of the electrons in the defect with the spin state of the nitrogen nucleus for a brief time –– less than 100 billionths of a second –– information that was originally encoded in the electrons is passed to the nucleus.

"The result is an extremely fast transfer of the quantum information to the long-lived nuclear spin, which could further enhance our capabilities to correct for errors during a quantum computation," said co-author Guido Burkard, a theoretical physicist at the University of Konstanz, who developed a model to understand the storage process.

The fourth author of the paper is Paul V. Klimov, a graduate student at UCSB.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>