Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International team demonstrates subatomic quantum memory in diamond

28.06.2011
Physicists working at the University of California, Santa Barbara and the University of Konstanz in Germany have developed a breakthrough in the use of diamond in quantum physics, marking an important step toward quantum computing. The results are reported in this week's online edition of Nature Physics.

The physicists were able to coax the fragile quantum information contained within a single electron in diamond to move into an adjacent single nitrogen nucleus, and then back again using on-chip wiring.

"This ability is potentially useful to create an atomic-scale memory element in a quantum computer based on diamond, since the subatomic nuclear states are more isolated from destructive interactions with the outside world," said David Awschalom, senior author. Awschalom is director of UCSB's Center for Spintronics & Quantum Computation, professor of physics, electrical and computer engineering, and the Peter J. Clarke director of the California NanoSystems Institute.

Awschalom said the discovery shows the high-fidelity operation of a quantum mechanical gate at the atomic level, enabling the transfer of full quantum information to and from one electron spin and a single nuclear spin at room temperature. The process is scalable, and opens the door to new solid-state quantum device development.

Scientists have recently shown that it is possible to synthesize thousands of these single electron states with beams of nitrogen atoms, intentionally creating defects to trap the single electrons. "What makes this demonstration particularly exciting is that a nitrogen atom is a part of the defect itself, meaning that these sub-atomic memory elements automatically scale with the number of logical bits in the quantum computer," said lead author Greg Fuchs, a postdoctoral fellow at UCSB.

Rather than using logical elements like transistors to manipulate digital states like "0" or "1," a quantum computer needs logical elements capable of manipulating quantum states that may be "0" and "1" at the same time. Even at ambient temperature, these defects in diamond can do exactly that, and have recently become a leading candidate to form a quantum version of a transistor.

However, there are still major challenges to building a diamond-based quantum computer. One of these is finding a method to store quantum information in a scalable way. Unlike a conventional computer, where the memory and the processor are in two different physical locations, in this case they are integrated together, bit-for-bit.

"We knew that the nitrogen nuclear spin would be a good choice for a scalable quantum memory –– it was already there," said Fuchs. "The hard part was to transfer the state quickly, before it is lost to decoherence."

Awschalom explained: "A key breakthrough was to use a unique property of quantum physics –– that two quantum objects can, under special conditions, become mixed to form a new composite object." By mixing the quantum spin state of the electrons in the defect with the spin state of the nitrogen nucleus for a brief time –– less than 100 billionths of a second –– information that was originally encoded in the electrons is passed to the nucleus.

"The result is an extremely fast transfer of the quantum information to the long-lived nuclear spin, which could further enhance our capabilities to correct for errors during a quantum computation," said co-author Guido Burkard, a theoretical physicist at the University of Konstanz, who developed a model to understand the storage process.

The fourth author of the paper is Paul V. Klimov, a graduate student at UCSB.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>