Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interference at a Double Slit Made of Two Atoms

01.03.2016

MPQ scientists observe unusual interference phenomena by scattering laser light from two atoms trapped inside an optical resonator

The investigation and exploitation of light-matter-interaction in optical resonators is one of the central research topics in the Quantum Dynamics Division of Professor Gerhard Rempe, Director at the Max Planck Institute of Quantum Optics in Garching.


Figure 1: Resonant laser light (red arrow) is being scattered from two single atoms. The effects that arise due to interference (here shown in an artist’s view) are determined by the relative spatial phase of the atoms and the interaction with the light mode of the optical resonator (mirrors in grey). Lower left: fluorescence image of two rubidium atoms. (Graphic: Andreas Neuzner, MPQ)

A couple of years ago, the team succeeded in creating single-photon emitters using single atoms stored in optical resonators. The stationary atoms can, for example, serve as nodes for the exchange of quantum information in a long-distance quantum network. Now, the scientists went one step further. They trapped a pair of atoms with well-defined relative positions in such a resonator and scattered light from this “double slit”.

They observed interference phenomena that contradict well-established intuition. These results were enabled by the development of a technique that allows for position control of the atoms with an accuracy well below the wavelength of the scattered light. One motivation for this experiment is to better understand fundamental aspects of cavity quantum electrodynamics.

Furthermore, the technique paves the way for studying new concepts of entanglement generation between quantum bits and thus opens up new perspectives for quantum information processing (Nature Photonics, AOP, 29 February 2016, DOI:10.1038/nphoton.2016.19).

Key element of the experimental set-up is an optical resonator consisting of two highly-reflecting mirrors spaced by 0.5 mm. Inside the cavity, a so-called optical lattice is generated by crossing two retro-reflected laser beams, one oriented orthogonal to and the other along the resonator axis. The resulting light pattern of bright and dark spots resembles a checker board with a period of about half a micrometre. These spots define lattice sites at which the atoms can be trapped and where they are localized to about 25 nanometres.

At first, a couple of rubidium atoms, precooled to very low temperatures, are loaded into the optical lattice. By detecting their fluorescence light via a high-resolution microscope objective, the atoms can be identified as individual light spots. Excess atoms are subsequently removed by individually heating them up with a resonant laser beam, until only a pair of atoms with the desired spacing remains. “This is the “double-slit” from which the resonant laser light, propagating transversally through the resonator, is scattered”, explains Andreas Neuzner, who performed this experiment as part of his doctoral studies.

„Interference can only be observed if the phase relation between the two light sources is fixed“, explains Dr. Stephan Ritter, another scientist on the experiment. “In order to investigate the interference as a function of the phase, we have to know the position of the atoms with a precision well below the wavelength of 780 nanometres.“ Although the resolution of the imaging system limits the size of the atom images to 1.3 micrometres, the scientists can localize the emitting atoms with an accuracy of 70 nanometres and can thereby assign their position to a particular lattice site. Therefore, the distance between two atoms, typically about 10 micrometres, is precisely known.

The resonator favours emission along its axis and enhances the interaction between the atoms and the scattered light, which is reflected multiple times between the mirrors. The light power leaking through one of the mirrors – i.e. the photon rate – is recorded as a function of the relative phase of the two atoms.

The observed interference pattern displays several intriguing features that are not expected in the simpler picture of two classical dipoles in free space. First, in the case of in-phase (constructive) interference, the intensity is only a factor of 1.3 larger than the rate observed for a single atom, whereas a fourfold larger signal is expected for the simpler picture. This phenomenon goes back to the various light fields inside the resonator that have to be taken into account. In contrast to the classical double-slit experiment, not only the phase relation between the scattered light waves matters. It is rather the superposition of the scattered light with the light field of the resonator that in the end leads to an intensity reduction in the field maxima.

The second feature occurs for out-of-phase (destructive) interference. Here, the photon rate drops below the value measured for a single atom, but does not go to zero as one would expect intuitively. Strikingly, extremely strong intensity fluctuations are observed, so-called photon bunching. “This phenomenon arises, because in the case of destructive interference, the atoms can emit photons only pairwise and at the same time into the resonator”, explains Andreas Neuzner.

„In this experiment we have combined three key techniques for the first time: Using an optical lattice, we position the atoms with high accuracy and then localize them with a high-resolution microscope. The interaction with the resonator enables directed detection of the scattered light“, says Stephan Ritter. “The newly developed techniques are essential for future experiments aiming to explore collective radiation effects predicted for multi-atom systems“, resumes Prof. Gerhard Rempe. “On the other hand, they offer the possibility to implement novel protocols for quantum information processing with several quantum bits.”
Olivia Meyer-Streng


Original publication:
A. Neuzner, M. Körber, O. Morin, S. Ritter and G. Rempe
Interference and dynamics of light from a distance-controlled atom pair
in an optical cavity
Nature Photonics, AOP 29 February 2016, DOI:10.1038/nphoton.2016.19

Contact:
Prof. Dr. Gerhard Rempe
Director at the Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1, 85748 Garching, Germany
Phone: +49 (0)89 / 32 905 - 701
E-mail: gerhard.rempe@mpq.mpg.de

Dr. Stephan Ritter
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 - 728
E-mail: stephan.ritter@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 - 213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>