Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An interesting feature of the α-preformation probability was identified by Chinese researchers

01.08.2013
Probing the preformation of the α-particle in the α-decay process is a very attractive subject in studies of nuclear structure.

Recently, this crucial α-preformation probability was empirically deduced and exhibits a new feature that had been inferred to some extent by Professor REN Zhongzhou and his group from Department of Physics, Nanjing University. This work, titled "Model-independent trend of α-preformation probability", was published in SCIENCE CHINA Physics, Mechanics & Astronomy 2013, Vol. 56(8).


Pá values for the Po and Rn isotopic chains obtained from various models, including the present and previous results of the present group. A similar variation in all curves is clearly displayed.

Credit: ©Science China Press

Dating back to the end of the 19th century, nuclear physics established itself as a field of science with the discovery of radioactivity. Since those years, α decay has always been considered the eminent topic in nuclear physics. In particular, as the dominant decay mode of superheavy nuclei, it is currently the only useful tool in the identification of any new heavy element and its isotopes.

Theoretically, the decay process is usually imagined in the Gamow picture as a preformed α cluster tunneling through the α-daughter potential barrier. Without doubt, the α-preformation probability is critical in view of nuclear structure. Nevertheless, detailed studies of this quantity provide results that remain ambiguous, despite extensive experimental investigations.

In the present work, the authors proposed an empirical formula that for the first time directly deduces the preformation factor of the αparticle from the experimental data. The α-preformation factors of 171 even-even nuclei were initially obtained that strongly confirmed the key role played by the shell effect in the formation of the α cluster during decay. The study was also extended to include heavier cluster emissions with satisfactory results. These in turn prove to a certain degree that the present analysis of the α-preformation factor is reasonable and reliable.

Interestingly, a new feature of the α-preformation probability (Pα) became evident in a further study. From a different perspective, the α-preformation probabilities for a given isotopic chain extracted from different theoretical analyses were found to have quite similar behavior when comparing the present results with other studies. Across the various studies, the relative trend in the α-preformation probabilities for an isotopic chain were actually model-independent, although the deduced values of the α-preformation factor based on the respective model differ from each other (see Figure 1). The inference is that these studies are consistent with each other despite the different theoretical models, and the present study can be taken as a certain proof of reliability of the previous theoretical results.

This study gives valuable information on the preformation probability of emitted particles in α-decay, and the new model-independent feature has been identified in detail. The researchers hope that the present investigation can be extended to a broader range of nuclei, and be used to provide clues for their follow-up work on nuclear structure.

This research was supported by the National Natural Science Foundation of China (Grant Nos. 11035001, 10975072, 10735010 and 11120101005), the National Major State Basic Research and Development of China (Grant Nos. 2010CB327803 and 2013CB834400), the Knowledge Innovative Program of the Chinese Academy of Sciences (Grant No. KJCX2-SW-N02), the Research Fund of Doctoral Point (RFDP) (Grant No. 20100091110028), the Project Funded by the Priority Academic Programme Development of Jiangsu Higher Education Institutions (PAPD), the Research and Innovation Project for College Postgraduate of Jiangsu Province (Grant No. CXZZ12¬_0031) and the Science and Technology Development Fund of Macau (Grant No. 068/2011/A).

See the article: QIAN Y B, REN Z Z*. Model-independent trend of α-preformation probability. SCIENCE CHINA Physics, Mechanics & Astronomy, 2013, 56(8):1520-1524.

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 50 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

REN ZhongZhou | EurekAlert!
Further information:
http://zh.scichina.com/english/

More articles from Physics and Astronomy:

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>