Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An interesting feature of the α-preformation probability was identified by Chinese researchers

01.08.2013
Probing the preformation of the α-particle in the α-decay process is a very attractive subject in studies of nuclear structure.

Recently, this crucial α-preformation probability was empirically deduced and exhibits a new feature that had been inferred to some extent by Professor REN Zhongzhou and his group from Department of Physics, Nanjing University. This work, titled "Model-independent trend of α-preformation probability", was published in SCIENCE CHINA Physics, Mechanics & Astronomy 2013, Vol. 56(8).


Pá values for the Po and Rn isotopic chains obtained from various models, including the present and previous results of the present group. A similar variation in all curves is clearly displayed.

Credit: ©Science China Press

Dating back to the end of the 19th century, nuclear physics established itself as a field of science with the discovery of radioactivity. Since those years, α decay has always been considered the eminent topic in nuclear physics. In particular, as the dominant decay mode of superheavy nuclei, it is currently the only useful tool in the identification of any new heavy element and its isotopes.

Theoretically, the decay process is usually imagined in the Gamow picture as a preformed α cluster tunneling through the α-daughter potential barrier. Without doubt, the α-preformation probability is critical in view of nuclear structure. Nevertheless, detailed studies of this quantity provide results that remain ambiguous, despite extensive experimental investigations.

In the present work, the authors proposed an empirical formula that for the first time directly deduces the preformation factor of the αparticle from the experimental data. The α-preformation factors of 171 even-even nuclei were initially obtained that strongly confirmed the key role played by the shell effect in the formation of the α cluster during decay. The study was also extended to include heavier cluster emissions with satisfactory results. These in turn prove to a certain degree that the present analysis of the α-preformation factor is reasonable and reliable.

Interestingly, a new feature of the α-preformation probability (Pα) became evident in a further study. From a different perspective, the α-preformation probabilities for a given isotopic chain extracted from different theoretical analyses were found to have quite similar behavior when comparing the present results with other studies. Across the various studies, the relative trend in the α-preformation probabilities for an isotopic chain were actually model-independent, although the deduced values of the α-preformation factor based on the respective model differ from each other (see Figure 1). The inference is that these studies are consistent with each other despite the different theoretical models, and the present study can be taken as a certain proof of reliability of the previous theoretical results.

This study gives valuable information on the preformation probability of emitted particles in α-decay, and the new model-independent feature has been identified in detail. The researchers hope that the present investigation can be extended to a broader range of nuclei, and be used to provide clues for their follow-up work on nuclear structure.

This research was supported by the National Natural Science Foundation of China (Grant Nos. 11035001, 10975072, 10735010 and 11120101005), the National Major State Basic Research and Development of China (Grant Nos. 2010CB327803 and 2013CB834400), the Knowledge Innovative Program of the Chinese Academy of Sciences (Grant No. KJCX2-SW-N02), the Research Fund of Doctoral Point (RFDP) (Grant No. 20100091110028), the Project Funded by the Priority Academic Programme Development of Jiangsu Higher Education Institutions (PAPD), the Research and Innovation Project for College Postgraduate of Jiangsu Province (Grant No. CXZZ12¬_0031) and the Science and Technology Development Fund of Macau (Grant No. 068/2011/A).

See the article: QIAN Y B, REN Z Z*. Model-independent trend of α-preformation probability. SCIENCE CHINA Physics, Mechanics & Astronomy, 2013, 56(8):1520-1524.

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 50 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

REN ZhongZhou | EurekAlert!
Further information:
http://zh.scichina.com/english/

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>