Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With instruments in space and on earth, NJIT solar experts monitor the massive solar storm

10.01.2014
The first powerful "X-class" solar flare of 2014, in association with another solar phenomenon, a giant cloud of solar particles known as a coronal mass ejection (CME), erupted from the sun on Tuesday, sending radiation and particles speeding toward Earth and disrupting operations on the ground.

NASA reported on Wednesday that Orbital Sciences Corp., a commercial spaceflight company on a cargo delivery mission to the International Space Station, had called off its rocket launch that day from the agency's Wallops Flight Facility in Virginia because of the unusually high levels of radiation.

"This was a huge event, with the CME now classified as an R-type for its rarity, with an estimated speed much higher than we have recently seen because of the massive release of energy," commented Andrew Gerrard, an NJIT professor of physics and deputy director of the university's Center for Solar-Terrestrial Research.

"Eruptions of this magnitude can cause circulation changes in the upper atmosphere, communications disruptions in space and on the ground, and other potential electrical anomalies. We can lose track of space craft, whose orbits can be disrupted by these in these events. It's like driving through molasses."

NJIT is continuing to measure the solar explosion's impact from space with its instruments on the Van Allen Probes, NASA space craft that travel through the inner magnetosphere, and on the ground through instruments like those in the NATION Fabry-Perot systems in North America, which measure thermospheric winds and temperatures, and in systems across the Antarctic plateau that measure geomagnetic variability.

"This is a beautiful opportunity to look at how this material from the sun is injected into the radiation belts, inner magnetosphere, and upper atmosphere," Gerrard said. "We may not see anything like this for another decade."

NJIT's Center for Solar-Terrestrial Research also operates the university's Big Bear Solar Observatory (BBSO) in California, which is home to the world's most powerful ground-based telescope dedicated to solar research. NJIT professors at BBSO in Big Bear have obtained new and remarkably detailed photos of the Sun with the New Solar Telescope (NST).

The flare, a giant burst of radiation designated as X-class for the most intense flares, is centered over a giant sunspot AR1944 located at the center of the sun. By Wednesday, the solar radiation storm had intensified to an S3 or strong event, while the coronal mass ejection was forecast to set off G3 (Strong) Geomagnetic Storm activity through January 9 and 10, NASA said.

Solar flares and coronal mass ejections regularly send bursts of charged particles and high energy radiation in Earth's direction at nearly the speed of light. Upon reaching our atmosphere within minutes, solar radiation can destroy the electronic systems in satellites used in telecommunications, weather forecasting and GPS systems, among other services, as well as devices on the ground, such as transformers.

In 1989, for example, a solar storm brought down the Hydro-Quebec grid within minutes, blacking out the entire province as well as parts of the Northern United States for several hours.

For further information about the solar event and its terrestrial impacts, please contact Andrew Gerrard at 732-357-5230 or gerrard@njit.edu.

NJIT, New Jersey's science and technology university, enrolls 10,000 students pursuing bachelor's, master's and doctoral degrees in 120 programs.

The university consists of six colleges: Newark College of Engineering, College of Architecture and Design, College of Science and Liberal Arts, School of Management, College of Computing Sciences and Albert Dorman Honors College. U.S. News & World Report's 2011 Annual Guide to America's Best Colleges ranked NJIT in the top tier of national research universities. NJIT is internationally recognized for being at the edge in knowledge in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning.

Many courses and certificate programs, as well as graduate degrees, are available online through the Division of Continuing Professional Education.

Andrew Gerrard | EurekAlert!
Further information:
http://www.njit.edu

More articles from Physics and Astronomy:

nachricht Knots in chaotic waves
29.07.2016 | University of Bristol

nachricht International team of scientists unveils fundamental properties of spin Seebeck effect
29.07.2016 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>