Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With instruments in space and on earth, NJIT solar experts monitor the massive solar storm

10.01.2014
The first powerful "X-class" solar flare of 2014, in association with another solar phenomenon, a giant cloud of solar particles known as a coronal mass ejection (CME), erupted from the sun on Tuesday, sending radiation and particles speeding toward Earth and disrupting operations on the ground.

NASA reported on Wednesday that Orbital Sciences Corp., a commercial spaceflight company on a cargo delivery mission to the International Space Station, had called off its rocket launch that day from the agency's Wallops Flight Facility in Virginia because of the unusually high levels of radiation.

"This was a huge event, with the CME now classified as an R-type for its rarity, with an estimated speed much higher than we have recently seen because of the massive release of energy," commented Andrew Gerrard, an NJIT professor of physics and deputy director of the university's Center for Solar-Terrestrial Research.

"Eruptions of this magnitude can cause circulation changes in the upper atmosphere, communications disruptions in space and on the ground, and other potential electrical anomalies. We can lose track of space craft, whose orbits can be disrupted by these in these events. It's like driving through molasses."

NJIT is continuing to measure the solar explosion's impact from space with its instruments on the Van Allen Probes, NASA space craft that travel through the inner magnetosphere, and on the ground through instruments like those in the NATION Fabry-Perot systems in North America, which measure thermospheric winds and temperatures, and in systems across the Antarctic plateau that measure geomagnetic variability.

"This is a beautiful opportunity to look at how this material from the sun is injected into the radiation belts, inner magnetosphere, and upper atmosphere," Gerrard said. "We may not see anything like this for another decade."

NJIT's Center for Solar-Terrestrial Research also operates the university's Big Bear Solar Observatory (BBSO) in California, which is home to the world's most powerful ground-based telescope dedicated to solar research. NJIT professors at BBSO in Big Bear have obtained new and remarkably detailed photos of the Sun with the New Solar Telescope (NST).

The flare, a giant burst of radiation designated as X-class for the most intense flares, is centered over a giant sunspot AR1944 located at the center of the sun. By Wednesday, the solar radiation storm had intensified to an S3 or strong event, while the coronal mass ejection was forecast to set off G3 (Strong) Geomagnetic Storm activity through January 9 and 10, NASA said.

Solar flares and coronal mass ejections regularly send bursts of charged particles and high energy radiation in Earth's direction at nearly the speed of light. Upon reaching our atmosphere within minutes, solar radiation can destroy the electronic systems in satellites used in telecommunications, weather forecasting and GPS systems, among other services, as well as devices on the ground, such as transformers.

In 1989, for example, a solar storm brought down the Hydro-Quebec grid within minutes, blacking out the entire province as well as parts of the Northern United States for several hours.

For further information about the solar event and its terrestrial impacts, please contact Andrew Gerrard at 732-357-5230 or gerrard@njit.edu.

NJIT, New Jersey's science and technology university, enrolls 10,000 students pursuing bachelor's, master's and doctoral degrees in 120 programs.

The university consists of six colleges: Newark College of Engineering, College of Architecture and Design, College of Science and Liberal Arts, School of Management, College of Computing Sciences and Albert Dorman Honors College. U.S. News & World Report's 2011 Annual Guide to America's Best Colleges ranked NJIT in the top tier of national research universities. NJIT is internationally recognized for being at the edge in knowledge in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning.

Many courses and certificate programs, as well as graduate degrees, are available online through the Division of Continuing Professional Education.

Andrew Gerrard | EurekAlert!
Further information:
http://www.njit.edu

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>