Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Instantaneous trace gas fingerprint with laser frequency combs

30.11.2009
Scientists at the MPQ record ultrasensitive absorption broadband spectra within tens of microseconds by combining cavity enhancement and frequency comb spectroscopy.

Trace gas spectroscopic detection has drawn much interest in recent years, as it both allows a better understanding of the molecular spectra of weak overtone transitions and in situ non-intrusive sensing of compounds at low concentration. However, recording a broadband spectrum within a very short measurement time and with high sensitivity remains a challenge.

At the Max Planck Institute of Quantum Optics, a team of scientists around Professor Theodor W. Hänsch and Doctor Nathalie Picqué in a cooperation [1] involving the Laboratoire de Photophysique Moléculaire du Centre National de la Recherche Scientifique (Orsay, France), the University of Tokyo (Chiba, Japan) and the Ludwig Maximilian's University (Munich, Germany) have implemented a new instrument, based on laser frequency combs, which holds much promise for such a breakthrough. (Nature Photonics, AOP, January 2010 DOI:10.1038/nphoton.2009.217)

The remarkable convergence between two separate fields, ultrafast optics and frequency metrology, has led to the precise control of the frequency spectrum produced by mode-locked lasers, which consists of a regular comb of sharp lines. The resulting optical frequency combs, pioneered by 2005 Nobel Prize laureate Professor Theodor W. Hänsch, have had tremendous impact on the various areas of precision measurement and extreme nonlinear optics. A growing list of applications includes molecular spectroscopy.

Here, the new instrument comes into play. All the equidistant modes of a first laser frequency comb are injected into a resonant passive high finesse cavity, which contains a gas sample. Inside the cavity the interaction length between the light and the sample is dramatically enlarged due to multiple reflections. This enhances the molecular absorption signal by several orders of magnitude. The light transmitted by the cavity exhibits a broad band spectrum of absorption lines, which needs to be analysed by a spectrometer: a second frequency comb, with a slightly detuned repetition frequency. The beat notes between pairs of lines from the two combs reveal the optical spectrum. This Fourier transform spectrometer without moving parts is one-million times faster than the scanning Michelson-based Fourier transform interferometer, which has been the dominating instrument in analytical sciences for decades. The cavity-enhanced dual-comb spectrometer described here has the potential to become a powerful tool for ultrasensitive spectroscopy without sacrificing high-resolution, spectral bandwidth, and high-speed.

A proof-of-principle experiment has been undertaken by Birgitta Bernhardt, with the help of Akira Ozawa and Patrick Jacquet, all graduate students. With Ytterbium-based fiber frequency combs emitting around 1040 nm, they succeeded for the first time in resolving the crowded weak overtone spectrum of ammonia, a molecule of planetological and environmental interests. Moreover the spectrum was recorded within only 18 microseconds and the achieved sensitivity is already 20-fold better, with a 100-fold shorter measurement time, than present state-of-the-art experiments. "As we are able to record such sensitive spectra every 20 microseconds, our technique exhibits an intriguing potential for the monitoring of chemical reactions or the spectroscopic sensing of dynamic single-events. Furthermore, we could extend our experimental concept to any region of the electromagnetic spectrum, in particular to the mid-infrared 'molecular fingerprint' region where no powerful real-time techniques are available at present. Here the implementation of the cavity-enhanced-dual-comb method would for instance allow sub-ppb minimum detectable concentrations for a variety of molecules of atmospheric relevance. This exhilarating perspective however still presents challenging issues", states Birgitta Bernhardt.

The field of trace gas sensing is presently advancing in many different directions ranging from biomedicine to environmental monitoring or analytical chemistry, plasma physics and laboratory astrophysics. The cavity-enhanced dual-comb spectroscopy technique might find many important applications for practical spectroscopy. (Olivia Meyer-Streng)

[1] The collaboration between the Max Planck Institute for Quantum Optics of the Max Planck Society and the Laboratoire de Photophysique Moléculaire du Centre National de la Recherche Scientifique is performed in the frame of the "European Laboratory for Frequency Comb Spectroscopy" European Associated Laboratory.

Original publication:
B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Hänsch, N. Picqué,
Cavity-enhanced dual-comb spectroscopy,
Nature Photonics, Advance Online Publication, January 2010, doi:10.1038/ nphoton.2009.217
Contact:
Prof. Dr. Theodor W. Hänsch
Max Planck Institute of Quantum Optics
Hans Kopfermann strasse 1
85748 Garching
Phone: +4989 32905 712
Email: t.w.haensch@mpq.mpg.de
Dr. Nathalie Picqué
Max Planck Institute of Quantum Optics &
Centre National de la Recherche Scientifique
Phone: +4989 32905 290
Email: nathalie.picque@u-psud.fr
Mrs. Birgitta Bernhardt
Max Planck Institute of Quantum Optics
Phone: +4989 32905 295
Email: birgitta.bernhardt@mpq.mpg.de
Dr. Olivia Meyer-Streng
Max Planck Institute of Quantum Optics
Press & Public Relations
Tel.: +4989 32905 213
Fax: +4989 32905 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>