Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Instantaneous trace gas fingerprint with laser frequency combs

30.11.2009
Scientists at the MPQ record ultrasensitive absorption broadband spectra within tens of microseconds by combining cavity enhancement and frequency comb spectroscopy.

Trace gas spectroscopic detection has drawn much interest in recent years, as it both allows a better understanding of the molecular spectra of weak overtone transitions and in situ non-intrusive sensing of compounds at low concentration. However, recording a broadband spectrum within a very short measurement time and with high sensitivity remains a challenge.

At the Max Planck Institute of Quantum Optics, a team of scientists around Professor Theodor W. Hänsch and Doctor Nathalie Picqué in a cooperation [1] involving the Laboratoire de Photophysique Moléculaire du Centre National de la Recherche Scientifique (Orsay, France), the University of Tokyo (Chiba, Japan) and the Ludwig Maximilian's University (Munich, Germany) have implemented a new instrument, based on laser frequency combs, which holds much promise for such a breakthrough. (Nature Photonics, AOP, January 2010 DOI:10.1038/nphoton.2009.217)

The remarkable convergence between two separate fields, ultrafast optics and frequency metrology, has led to the precise control of the frequency spectrum produced by mode-locked lasers, which consists of a regular comb of sharp lines. The resulting optical frequency combs, pioneered by 2005 Nobel Prize laureate Professor Theodor W. Hänsch, have had tremendous impact on the various areas of precision measurement and extreme nonlinear optics. A growing list of applications includes molecular spectroscopy.

Here, the new instrument comes into play. All the equidistant modes of a first laser frequency comb are injected into a resonant passive high finesse cavity, which contains a gas sample. Inside the cavity the interaction length between the light and the sample is dramatically enlarged due to multiple reflections. This enhances the molecular absorption signal by several orders of magnitude. The light transmitted by the cavity exhibits a broad band spectrum of absorption lines, which needs to be analysed by a spectrometer: a second frequency comb, with a slightly detuned repetition frequency. The beat notes between pairs of lines from the two combs reveal the optical spectrum. This Fourier transform spectrometer without moving parts is one-million times faster than the scanning Michelson-based Fourier transform interferometer, which has been the dominating instrument in analytical sciences for decades. The cavity-enhanced dual-comb spectrometer described here has the potential to become a powerful tool for ultrasensitive spectroscopy without sacrificing high-resolution, spectral bandwidth, and high-speed.

A proof-of-principle experiment has been undertaken by Birgitta Bernhardt, with the help of Akira Ozawa and Patrick Jacquet, all graduate students. With Ytterbium-based fiber frequency combs emitting around 1040 nm, they succeeded for the first time in resolving the crowded weak overtone spectrum of ammonia, a molecule of planetological and environmental interests. Moreover the spectrum was recorded within only 18 microseconds and the achieved sensitivity is already 20-fold better, with a 100-fold shorter measurement time, than present state-of-the-art experiments. "As we are able to record such sensitive spectra every 20 microseconds, our technique exhibits an intriguing potential for the monitoring of chemical reactions or the spectroscopic sensing of dynamic single-events. Furthermore, we could extend our experimental concept to any region of the electromagnetic spectrum, in particular to the mid-infrared 'molecular fingerprint' region where no powerful real-time techniques are available at present. Here the implementation of the cavity-enhanced-dual-comb method would for instance allow sub-ppb minimum detectable concentrations for a variety of molecules of atmospheric relevance. This exhilarating perspective however still presents challenging issues", states Birgitta Bernhardt.

The field of trace gas sensing is presently advancing in many different directions ranging from biomedicine to environmental monitoring or analytical chemistry, plasma physics and laboratory astrophysics. The cavity-enhanced dual-comb spectroscopy technique might find many important applications for practical spectroscopy. (Olivia Meyer-Streng)

[1] The collaboration between the Max Planck Institute for Quantum Optics of the Max Planck Society and the Laboratoire de Photophysique Moléculaire du Centre National de la Recherche Scientifique is performed in the frame of the "European Laboratory for Frequency Comb Spectroscopy" European Associated Laboratory.

Original publication:
B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Hänsch, N. Picqué,
Cavity-enhanced dual-comb spectroscopy,
Nature Photonics, Advance Online Publication, January 2010, doi:10.1038/ nphoton.2009.217
Contact:
Prof. Dr. Theodor W. Hänsch
Max Planck Institute of Quantum Optics
Hans Kopfermann strasse 1
85748 Garching
Phone: +4989 32905 712
Email: t.w.haensch@mpq.mpg.de
Dr. Nathalie Picqué
Max Planck Institute of Quantum Optics &
Centre National de la Recherche Scientifique
Phone: +4989 32905 290
Email: nathalie.picque@u-psud.fr
Mrs. Birgitta Bernhardt
Max Planck Institute of Quantum Optics
Phone: +4989 32905 295
Email: birgitta.bernhardt@mpq.mpg.de
Dr. Olivia Meyer-Streng
Max Planck Institute of Quantum Optics
Press & Public Relations
Tel.: +4989 32905 213
Fax: +4989 32905 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>