Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Instantaneous trace gas fingerprint with laser frequency combs

Scientists at the MPQ record ultrasensitive absorption broadband spectra within tens of microseconds by combining cavity enhancement and frequency comb spectroscopy.

Trace gas spectroscopic detection has drawn much interest in recent years, as it both allows a better understanding of the molecular spectra of weak overtone transitions and in situ non-intrusive sensing of compounds at low concentration. However, recording a broadband spectrum within a very short measurement time and with high sensitivity remains a challenge.

At the Max Planck Institute of Quantum Optics, a team of scientists around Professor Theodor W. Hänsch and Doctor Nathalie Picqué in a cooperation [1] involving the Laboratoire de Photophysique Moléculaire du Centre National de la Recherche Scientifique (Orsay, France), the University of Tokyo (Chiba, Japan) and the Ludwig Maximilian's University (Munich, Germany) have implemented a new instrument, based on laser frequency combs, which holds much promise for such a breakthrough. (Nature Photonics, AOP, January 2010 DOI:10.1038/nphoton.2009.217)

The remarkable convergence between two separate fields, ultrafast optics and frequency metrology, has led to the precise control of the frequency spectrum produced by mode-locked lasers, which consists of a regular comb of sharp lines. The resulting optical frequency combs, pioneered by 2005 Nobel Prize laureate Professor Theodor W. Hänsch, have had tremendous impact on the various areas of precision measurement and extreme nonlinear optics. A growing list of applications includes molecular spectroscopy.

Here, the new instrument comes into play. All the equidistant modes of a first laser frequency comb are injected into a resonant passive high finesse cavity, which contains a gas sample. Inside the cavity the interaction length between the light and the sample is dramatically enlarged due to multiple reflections. This enhances the molecular absorption signal by several orders of magnitude. The light transmitted by the cavity exhibits a broad band spectrum of absorption lines, which needs to be analysed by a spectrometer: a second frequency comb, with a slightly detuned repetition frequency. The beat notes between pairs of lines from the two combs reveal the optical spectrum. This Fourier transform spectrometer without moving parts is one-million times faster than the scanning Michelson-based Fourier transform interferometer, which has been the dominating instrument in analytical sciences for decades. The cavity-enhanced dual-comb spectrometer described here has the potential to become a powerful tool for ultrasensitive spectroscopy without sacrificing high-resolution, spectral bandwidth, and high-speed.

A proof-of-principle experiment has been undertaken by Birgitta Bernhardt, with the help of Akira Ozawa and Patrick Jacquet, all graduate students. With Ytterbium-based fiber frequency combs emitting around 1040 nm, they succeeded for the first time in resolving the crowded weak overtone spectrum of ammonia, a molecule of planetological and environmental interests. Moreover the spectrum was recorded within only 18 microseconds and the achieved sensitivity is already 20-fold better, with a 100-fold shorter measurement time, than present state-of-the-art experiments. "As we are able to record such sensitive spectra every 20 microseconds, our technique exhibits an intriguing potential for the monitoring of chemical reactions or the spectroscopic sensing of dynamic single-events. Furthermore, we could extend our experimental concept to any region of the electromagnetic spectrum, in particular to the mid-infrared 'molecular fingerprint' region where no powerful real-time techniques are available at present. Here the implementation of the cavity-enhanced-dual-comb method would for instance allow sub-ppb minimum detectable concentrations for a variety of molecules of atmospheric relevance. This exhilarating perspective however still presents challenging issues", states Birgitta Bernhardt.

The field of trace gas sensing is presently advancing in many different directions ranging from biomedicine to environmental monitoring or analytical chemistry, plasma physics and laboratory astrophysics. The cavity-enhanced dual-comb spectroscopy technique might find many important applications for practical spectroscopy. (Olivia Meyer-Streng)

[1] The collaboration between the Max Planck Institute for Quantum Optics of the Max Planck Society and the Laboratoire de Photophysique Moléculaire du Centre National de la Recherche Scientifique is performed in the frame of the "European Laboratory for Frequency Comb Spectroscopy" European Associated Laboratory.

Original publication:
B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Hänsch, N. Picqué,
Cavity-enhanced dual-comb spectroscopy,
Nature Photonics, Advance Online Publication, January 2010, doi:10.1038/ nphoton.2009.217
Prof. Dr. Theodor W. Hänsch
Max Planck Institute of Quantum Optics
Hans Kopfermann strasse 1
85748 Garching
Phone: +4989 32905 712
Dr. Nathalie Picqué
Max Planck Institute of Quantum Optics &
Centre National de la Recherche Scientifique
Phone: +4989 32905 290
Mrs. Birgitta Bernhardt
Max Planck Institute of Quantum Optics
Phone: +4989 32905 295
Dr. Olivia Meyer-Streng
Max Planck Institute of Quantum Optics
Press & Public Relations
Tel.: +4989 32905 213
Fax: +4989 32905 200

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>