Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Instantaneous Cosmic Growth: Have We Found the Smoking Gun? Three Theorists Weigh In

21.05.2014

We may have “smoking gun” evidence the universe expanded with unmatchable speed in its earliest moments. So what does this mean? Three theoretical physicists -- Daniel Baumann, Michael S. Turner and Paul Steinhardt -- consider the evidence, its implications and the next steps.

For decades, theorists have speculated that in its very first moments, our universe underwent a mind-bogglingly fast expansion that took it from the diminutive size of a proton to a vast expanse. Earlier this year, scientists announced a stunning development: what may be the first “smoking gun” evidence in support of this theory.

How certain is this result and, if it’s corroborated, what does it mean for our theories of how the universe works? Three leading theorists spoke recently with The Kavli Foundation about the implications of these results on our understanding of the early universe.

“To have the signal come in basically as big as it could be—bigger even—was just amazing,” said theorist Michael S. Turner, Director of the Kavli Institute for Cosmological Physics (KICP) and the Bruce V. and Diana M. Rauner Distinguished Service Professor at the University of Chicago. “We’re used to cosmology awing us, but this time it shocked us as well.”

Daniel Baumann, a lecturer in theoretical physics at Cambridge University whose research focuses on inflation and string theory, agreed: “My initial reaction was also shock and awe. I was intellectually prepared for these experiments, …but somehow in my gut I wasn’t prepared to have a signal that was as big as it actually was.”

“My concern at the moment is that it’s not yet clear whether or not they got it right,” said Paul Steinhardt, the Albert Einstein Professor in Science and Director of the Princeton Center for Theoretical Science at Princeton University. “They’ve definitely seen something. But deciding whether it’s due to gravitational waves produced in the early universe or due to some source in the foreground that’s between us and where the microwave background was emitted, that’s a key issue.”

More than half a dozen experiments around the world are now seeking to confirm BICEP2’s result in other frequencies and in other regions of the sky. The participants agreed that if these experiments find a similar signal and its shape matches what’s expected, that will be solid proof of cosmic inflation. In addition, the opportunity would exist to see subtle surprises in the signal that could lead to the discovery of new physics.

The complete discussion is available on The Kavli Foundation website: http://www.kavlifoundation.org/science-spotlights/theory-cosmic-inflation-bicep2

James Cohen | newswise

Further reports about: Cambridge Cosmic Foundation Kavli Science Smoking frequencies shock surprises waves

More articles from Physics and Astronomy:

nachricht Midwife and signpost for photons
11.12.2017 | Julius-Maximilians-Universität Würzburg

nachricht New research identifies how 3-D printed metals can be both strong and ductile
11.12.2017 | University of Birmingham

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>