Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Instantaneous Cosmic Growth: Have We Found the Smoking Gun? Three Theorists Weigh In

21.05.2014

We may have “smoking gun” evidence the universe expanded with unmatchable speed in its earliest moments. So what does this mean? Three theoretical physicists -- Daniel Baumann, Michael S. Turner and Paul Steinhardt -- consider the evidence, its implications and the next steps.

For decades, theorists have speculated that in its very first moments, our universe underwent a mind-bogglingly fast expansion that took it from the diminutive size of a proton to a vast expanse. Earlier this year, scientists announced a stunning development: what may be the first “smoking gun” evidence in support of this theory.

How certain is this result and, if it’s corroborated, what does it mean for our theories of how the universe works? Three leading theorists spoke recently with The Kavli Foundation about the implications of these results on our understanding of the early universe.

“To have the signal come in basically as big as it could be—bigger even—was just amazing,” said theorist Michael S. Turner, Director of the Kavli Institute for Cosmological Physics (KICP) and the Bruce V. and Diana M. Rauner Distinguished Service Professor at the University of Chicago. “We’re used to cosmology awing us, but this time it shocked us as well.”

Daniel Baumann, a lecturer in theoretical physics at Cambridge University whose research focuses on inflation and string theory, agreed: “My initial reaction was also shock and awe. I was intellectually prepared for these experiments, …but somehow in my gut I wasn’t prepared to have a signal that was as big as it actually was.”

“My concern at the moment is that it’s not yet clear whether or not they got it right,” said Paul Steinhardt, the Albert Einstein Professor in Science and Director of the Princeton Center for Theoretical Science at Princeton University. “They’ve definitely seen something. But deciding whether it’s due to gravitational waves produced in the early universe or due to some source in the foreground that’s between us and where the microwave background was emitted, that’s a key issue.”

More than half a dozen experiments around the world are now seeking to confirm BICEP2’s result in other frequencies and in other regions of the sky. The participants agreed that if these experiments find a similar signal and its shape matches what’s expected, that will be solid proof of cosmic inflation. In addition, the opportunity would exist to see subtle surprises in the signal that could lead to the discovery of new physics.

The complete discussion is available on The Kavli Foundation website: http://www.kavlifoundation.org/science-spotlights/theory-cosmic-inflation-bicep2

James Cohen | newswise

Further reports about: Cambridge Cosmic Foundation Kavli Science Smoking frequencies shock surprises waves

More articles from Physics and Astronomy:

nachricht NASA scientist suggests possible link between primordial black holes and dark matter
25.05.2016 | NASA/Goddard Space Flight Center

nachricht The dark side of the fluffiest galaxies
24.05.2016 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>