Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insight into Attosecond Physics

14.01.2010
The new homepage of the Laboratory for Attosecond Physics at Max Planck Institute of Quantum Optics and Ludwig Maximilian's University of Munich gives an insight into their research on ultrafast processes in nature.

Anyone delving deep into matter must reckon with the fact that the usual time scales cease to be valid in the tiny dimensions of molecules, atoms and electrons. Molecules react within femtoseconds (millionths of a billionth of a second).

The motion of electrons in atoms is a thousand times faster still, lasting just a few attoseconds. The Laboratory for Attosecond Physics (LAP) team, headed by Prof. Ferenc Krausz, at Max Planck Institute of Quantum Optics in Garching and Ludwig Maximilian's University of Munich are conducting research on these ultrafast processes by means of ultrashort light flashes.

The physicists involved now present a new homepage (www.attoworld.de) that gives a broad view of their work, and explain to both the lay public and experts how they coax the microcosm into divulging its secrets.

Welcome to the dashing world of quanta. The new homepage www.attoworld.de in English is all about ultrafast motion and minute time dimensions. Due prominence is given to the fascinating interaction of electrons and light pulses.

The light pulses, produced with the most modern lasers, last just a few femtoseconds to attoseconds (an attosecond being a billionth of a billionth of a second). They allow the LAP scientists to photograph, so to speak, quantum particles and thus gain insight into the fundamental processes of life. Attosecond Physics also affords promising prospects in technology, for light waves and the electric and magnetic fields involved make it possible not only to observe, but also to control electrons. This opens the way to completely new applications, such as in information technology.

The new attoworld homepage now shows in detail how these ultrafast processes are being investigated. The scientific information provided is aimed at both the interested lay public and fellow scientists. After a personal introduction, the LAP team gives information on how to become a laser physicist, what constitutes a scientist's work and what fascinates each of them about attosecond technology.

In recent years attosecond physics has undergone enormous development. This is impressively testified to by the increasing number of renowned publications. The attoworld homepage now aims to accompany this fascinating area of physics with current articles, illustrations and photos. Regular clicking is always worthwhile.

Thorsten Naeser

Further information available from:

Thorsten Naeser
Max Planck Institute of Quantum Optics
Laboratory for Attosecond Physics
(Professor Ferenc Krausz)
Hans-Kopfermann-Str. 1
85748 Garching
E-mail: thorsten.naeser@mpq.mpg.de
Phone: + 49 89 32905 124
Dr. Christian Hackenberger
Ludwig Maximilian's University of Munich
Laboratory for Attosecond Physics
(Professor Ferenc Krausz)
Hans-Kopfermann-Str. 1
85748 Garching
E-mail: christian.hackenberger@mpq.mpg.de
Phone: + 49 89 32905 622
Dr. Olivia Meyer-Streng
Max Planck Institute of Quantum Optics
Press & Public Relations Office
Hans-Kopfermann-Str. 1
85748 Garching
e-mail: olivia.meyer-streng@mpq.mpg.de
Phone: +49 (0)89 / 32905 - 213
Fax: +49 (0)89 / 32905 - 200

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

Further reports about: Attosecond Ferenc LAP Laboratory Management Insights feature Optic Physic Physics Quantum magnetic field

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>