Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insight into Attosecond Physics

14.01.2010
The new homepage of the Laboratory for Attosecond Physics at Max Planck Institute of Quantum Optics and Ludwig Maximilian's University of Munich gives an insight into their research on ultrafast processes in nature.

Anyone delving deep into matter must reckon with the fact that the usual time scales cease to be valid in the tiny dimensions of molecules, atoms and electrons. Molecules react within femtoseconds (millionths of a billionth of a second).

The motion of electrons in atoms is a thousand times faster still, lasting just a few attoseconds. The Laboratory for Attosecond Physics (LAP) team, headed by Prof. Ferenc Krausz, at Max Planck Institute of Quantum Optics in Garching and Ludwig Maximilian's University of Munich are conducting research on these ultrafast processes by means of ultrashort light flashes.

The physicists involved now present a new homepage (www.attoworld.de) that gives a broad view of their work, and explain to both the lay public and experts how they coax the microcosm into divulging its secrets.

Welcome to the dashing world of quanta. The new homepage www.attoworld.de in English is all about ultrafast motion and minute time dimensions. Due prominence is given to the fascinating interaction of electrons and light pulses.

The light pulses, produced with the most modern lasers, last just a few femtoseconds to attoseconds (an attosecond being a billionth of a billionth of a second). They allow the LAP scientists to photograph, so to speak, quantum particles and thus gain insight into the fundamental processes of life. Attosecond Physics also affords promising prospects in technology, for light waves and the electric and magnetic fields involved make it possible not only to observe, but also to control electrons. This opens the way to completely new applications, such as in information technology.

The new attoworld homepage now shows in detail how these ultrafast processes are being investigated. The scientific information provided is aimed at both the interested lay public and fellow scientists. After a personal introduction, the LAP team gives information on how to become a laser physicist, what constitutes a scientist's work and what fascinates each of them about attosecond technology.

In recent years attosecond physics has undergone enormous development. This is impressively testified to by the increasing number of renowned publications. The attoworld homepage now aims to accompany this fascinating area of physics with current articles, illustrations and photos. Regular clicking is always worthwhile.

Thorsten Naeser

Further information available from:

Thorsten Naeser
Max Planck Institute of Quantum Optics
Laboratory for Attosecond Physics
(Professor Ferenc Krausz)
Hans-Kopfermann-Str. 1
85748 Garching
E-mail: thorsten.naeser@mpq.mpg.de
Phone: + 49 89 32905 124
Dr. Christian Hackenberger
Ludwig Maximilian's University of Munich
Laboratory for Attosecond Physics
(Professor Ferenc Krausz)
Hans-Kopfermann-Str. 1
85748 Garching
E-mail: christian.hackenberger@mpq.mpg.de
Phone: + 49 89 32905 622
Dr. Olivia Meyer-Streng
Max Planck Institute of Quantum Optics
Press & Public Relations Office
Hans-Kopfermann-Str. 1
85748 Garching
e-mail: olivia.meyer-streng@mpq.mpg.de
Phone: +49 (0)89 / 32905 - 213
Fax: +49 (0)89 / 32905 - 200

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

Further reports about: Attosecond Ferenc LAP Laboratory Management Insights feature Optic Physic Physics Quantum magnetic field

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>