Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The inside of our Milky Way in 3D

12.09.2013
Scientists at the Max Planck Institute for Extraterrestrial Physics have produced the first detailed three-dimensional map of the stars that form the inner regions of our Milky Way, using publicly available VVV survey data from the science archive facility at ESO.

They find a box/peanut shaped bulge with an elongated bar and a prominent X-structure, which had been hinted at in previous studies. This indicates that the Milky Way was originally a pure disk of stars, which then formed a thin bar, before buckling into the box/peanut shape seen today.


Three-dimensional map of Milky Way's bulge, calculated from observations of red clump giant stars. This is the first time that such an accurate 3D-map has been reconstructed of the inner regions of our Milky Way. Because the map is 3D it can be rotated and viewed from different directions or detailed slices examined as shown in the video. The sun is shown in relation to the map but is not to scale.

The new map can be used for more detailed studies of the dynamics and evolution of our Milky Way.

Our Sun resides right inside the galactic disk, about 27 000 light-years from the core of our Milky Way. Due to the obscuring effects of dense gas and dust clouds it is therefore difficult to get accurate information about the shape and properties of the inner regions of our galaxy. By using a large number of so-called “red clump” giant stars from the new VVV survey scientists at the Max Planck Institute for Extraterrestrial Physics have now produced a three-dimensional map of the galactic bulge.

“While several studies with red clump giants and other methods have found evidence for a triaxial structure of the galactic bulge, the depth of this star catalogue exceeds previous work and we can detect the entire population of red clump giants in all but the most highly obscured regions,” explains Christopher Wegg at MPE. “From this star distribution we can then directly infer the three-dimensional density map, without the need to compare to theoretical models.”

The scientists used the VVV near-infrared survey of the bulge conducted with the VISTA telescope in Chile (“VISTA Variables in the Via Lactea Survey”), which covers the inner regions of the Milky Way and is able to observe stars thirty times fainter than previous bulge surveys. The observations were carried out by the VVV team, who then made their images and star catalogues available to the international community as science data products in the ESO science archive facility.

Red clump giant stars were chosen for this study as they can be used as a standard candle: at this stage in the star’s lifetime their luminosity is approximately independent of their age or composition. The amount of gas and dust obscuring the stars is calculated directly from the observed colours of the red clump stars, so that their brightness distribution without obscuration can be measured. Because red clump stars have nearly the same intrinsic brightness, this gives approximate distances to each star. The good spatial coverage of the VVV survey allowed measurements across the whole inner region of the Milky Way, and from these the three-dimensional measurement of the structure of the bulge was constructed.

“In our analysis we find that the inner region of our galaxy is in the shape of a box/peanut, with a highly elongated bar and a prominent X-structure,” says Ortwin Gerhard, who leads the dynamics group at MPE. “It is the first time that we can see this clearly in our own Milky Way, and the simulations in our group show that this shape is fairly characteristic of a barred spiral galaxy." In these simulations performed by Inma Martinez-Valpuesta, the Milky Way was a pure disk of stars which formed a flat bar billions of years ago before the inner part of this then buckled to form the three-dimensional box/peanut shape seen in the map.

The scientists expect that this measurement of the three-dimensional density of the bulge will help to constrain galaxy evolution models for both our Milky Way and spiral galaxies in general. But will also support a number of further studies on different stellar populations, gas flows, or microlensing.

Dr. Hannelore Hämmerle
MPE Pressesprecherin
Phone:+49 (0)89 30000 3980
Fax:+49 (0)89 30000 3569
Max-Planck-Institut für extraterrestrische Physik, Garching
Dr. Ortwin Gerhard
Phone:+49 89 30000 3539
Fax:+49 89 30000 3569
Wegg, Christopher
postdoc
Phone: +49 (0)89 30000-3715
Fax: +49 (0)89 30000-3569
Original publication
Christopher Wegg, Ortwin Gerhard
Mapping the three-dimensional density of the Galactic bulge with VVV red clump stars
MNRAS 2013

Dr. Hannelore Hämmerle | Max-Planck-Institute
Further information:
http://www.mpe.mpg.de/3286155/News_20130912

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>