Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The inside of our Milky Way in 3D

12.09.2013
Scientists at the Max Planck Institute for Extraterrestrial Physics have produced the first detailed three-dimensional map of the stars that form the inner regions of our Milky Way, using publicly available VVV survey data from the science archive facility at ESO.

They find a box/peanut shaped bulge with an elongated bar and a prominent X-structure, which had been hinted at in previous studies. This indicates that the Milky Way was originally a pure disk of stars, which then formed a thin bar, before buckling into the box/peanut shape seen today.


Three-dimensional map of Milky Way's bulge, calculated from observations of red clump giant stars. This is the first time that such an accurate 3D-map has been reconstructed of the inner regions of our Milky Way. Because the map is 3D it can be rotated and viewed from different directions or detailed slices examined as shown in the video. The sun is shown in relation to the map but is not to scale.

The new map can be used for more detailed studies of the dynamics and evolution of our Milky Way.

Our Sun resides right inside the galactic disk, about 27 000 light-years from the core of our Milky Way. Due to the obscuring effects of dense gas and dust clouds it is therefore difficult to get accurate information about the shape and properties of the inner regions of our galaxy. By using a large number of so-called “red clump” giant stars from the new VVV survey scientists at the Max Planck Institute for Extraterrestrial Physics have now produced a three-dimensional map of the galactic bulge.

“While several studies with red clump giants and other methods have found evidence for a triaxial structure of the galactic bulge, the depth of this star catalogue exceeds previous work and we can detect the entire population of red clump giants in all but the most highly obscured regions,” explains Christopher Wegg at MPE. “From this star distribution we can then directly infer the three-dimensional density map, without the need to compare to theoretical models.”

The scientists used the VVV near-infrared survey of the bulge conducted with the VISTA telescope in Chile (“VISTA Variables in the Via Lactea Survey”), which covers the inner regions of the Milky Way and is able to observe stars thirty times fainter than previous bulge surveys. The observations were carried out by the VVV team, who then made their images and star catalogues available to the international community as science data products in the ESO science archive facility.

Red clump giant stars were chosen for this study as they can be used as a standard candle: at this stage in the star’s lifetime their luminosity is approximately independent of their age or composition. The amount of gas and dust obscuring the stars is calculated directly from the observed colours of the red clump stars, so that their brightness distribution without obscuration can be measured. Because red clump stars have nearly the same intrinsic brightness, this gives approximate distances to each star. The good spatial coverage of the VVV survey allowed measurements across the whole inner region of the Milky Way, and from these the three-dimensional measurement of the structure of the bulge was constructed.

“In our analysis we find that the inner region of our galaxy is in the shape of a box/peanut, with a highly elongated bar and a prominent X-structure,” says Ortwin Gerhard, who leads the dynamics group at MPE. “It is the first time that we can see this clearly in our own Milky Way, and the simulations in our group show that this shape is fairly characteristic of a barred spiral galaxy." In these simulations performed by Inma Martinez-Valpuesta, the Milky Way was a pure disk of stars which formed a flat bar billions of years ago before the inner part of this then buckled to form the three-dimensional box/peanut shape seen in the map.

The scientists expect that this measurement of the three-dimensional density of the bulge will help to constrain galaxy evolution models for both our Milky Way and spiral galaxies in general. But will also support a number of further studies on different stellar populations, gas flows, or microlensing.

Dr. Hannelore Hämmerle
MPE Pressesprecherin
Phone:+49 (0)89 30000 3980
Fax:+49 (0)89 30000 3569
Max-Planck-Institut für extraterrestrische Physik, Garching
Dr. Ortwin Gerhard
Phone:+49 89 30000 3539
Fax:+49 89 30000 3569
Wegg, Christopher
postdoc
Phone: +49 (0)89 30000-3715
Fax: +49 (0)89 30000-3569
Original publication
Christopher Wegg, Ortwin Gerhard
Mapping the three-dimensional density of the Galactic bulge with VVV red clump stars
MNRAS 2013

Dr. Hannelore Hämmerle | Max-Planck-Institute
Further information:
http://www.mpe.mpg.de/3286155/News_20130912

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>