Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insects Inspire X-ray Improvements: Nanostructures Modeled After Moth Eyes May Enhance Medical Imaging

04.07.2012
Using the compound eyes of the humble moth as their inspiration, an international team of physicists has developed new nanoscale materials that could someday reduce the radiation dosages received by patients getting X-rayed, while improving the resolution of the resulting images.
The work, led by Yasha Yi-a professor of the City University of New York, who is also affiliated with Massachusetts Institute of Technology and New York University-was published today in the Optical Society's (OSA) journal, Optics Letters.

Like their Lepidopteran cousins the butterflies, moths have large compound eyes, made up of many thousands of ommatidia-structures made up of a primitive cornea and lens, connected to photoreceptor cells. But moth eyes, unlike those of butterflies, are remarkably anti-reflective, bouncing back very little of the light that strikes them. The adaptation helps the insects be stealthier and less visible to predators during their nocturnal flights. Because of this feature, engineers have looked to the moth eye to help design more efficient coatings for solar panels and antireflective surfaces for military devices, among other applications.

Now Yi and his colleagues have gone a step further, using the moth eye as a model for a new class of materials that improve the light-capturing efficiency of X-ray machines and similar medical imaging devices.

In particular, the researchers focused on so-called “scintillation” materials: compounds that, when struck by incoming particles (say, X-ray photons), absorb the energy of the particles and then reemit that absorbed energy in the form of light. In radiographic imaging devices, such scintillators are used to convert the X-rays exiting the body into the visible light signals picked up by a detector to form an image.

One way to improve the output (the intensity of light signals read by the detector, and thus the resolution of the resulting images) is to increase the input-that is, to use a higher x-ray dosage. But that’s not healthy for patients because of the increased levels of radiation. An alternative, Yi and colleagues figured, is to improve the efficiency with which the scintillator converts X-rays to light. Their new material does just that.
It consists of a thin film, just 500 nanometers thick, made of a special type of crystal known as cerium-doped lutetium oxyorthosilicate. These crystals were encrusted with tiny pyramid-shaped bumps or protuberances made of the ceramic material silicon nitride. Each protuberance, or “corneal nipple,” is modeled after the structures in a moth’s eye and is designed to extract more light from the film.

Between 100,000 to 200,000 of the protuberances fit within a 100 x 100 micrometer square, or about the same density as in an actual moth eye. The researchers then made the sidewalls of the device rougher, improving its ability to scatter light and thus enhancing the efficiency of the scintillator.

In lab experiments, Yi and colleagues found that adding the thin film to the scintillator of an X-ray mammographic unit increased the intensity of the emitted light by as much as 175 percent compared to that produced using a traditional scintillator.

The current work, Yi says, represents a proof-of-concept evaluation of the use of the moth-eye-based nanostructures in medical imaging materials. “The moth eye has been considered one of the most exciting bio structures because of its unique nano-optical properties,” he says, “and our work further improved upon this fascinating structure and demonstrated its use in medical imaging materials, where it promises to achieve lower patient radiation doses, higher-resolution imaging of human organs, and even smaller-scale medical imaging. And because the film is on the scintillator,” he adds, “the patient would not be aware of it at all.”

Yi estimates that it will take at least another three to five years to evaluate and perfect the film, and test it in imaging devices. “We will need to work with medical imaging experts and radiologists for this to be actually used in clinical practice,” he says.

The work was done in collaboration with Professors Bo Liu and Hong Chen of Tongji University in Shanghai.

Paper: “Giant light extraction enhancement of medical imaging scintillation materials using biologically inspired integrated nanostructures,” Optics Letters, Vol. 37, Issue 14, pp. 2808-2810 (2012).

EDITOR’S NOTE: Supporting images are available to members of the media upon request. Contact Angela Stark at astark@osa.org.

About Optics Letters

Published by the Optical Society (OSA), Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. This journal, edited by Alan E. Willner of the University of Southern California and published twice each month, is where readers look for the latest discoveries in optics. Visit www.OpticsInfoBase.org/OL.

About OSA

Uniting more than 130,000 professionals from 175 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics.

Angela Stark | EurekAlert!
Further information:
http://www.osa.org

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>