Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insect eyes inspire improved solar cells

21.01.2011
Anti-reflective film based on moth eyes increases efficiency of photovoltaics

The eyes of moths, which allow them to see well at night, are also covered with a water-repellent, antireflective coating that makes their eyes among the least reflective surfaces in nature and helps them hide from predators in the dark.

Mimicking the moth eye's microstructure, a team of researchers in Japan has created a new film, suitable for mass-production, for covering solar cells that can cut down on the amount of reflected light and help capture more power from the sun.

In a paper appearing in Energy Express (www.OpticsInfoBase.org/ee), a bi-monthly supplement to Optics Express, the open-access journal published by the Optical Society (OSA), the team describes how this film improves the performance of photovoltaic modules in laboratory and field experiments, and they calculate how the anti-reflection film would improve the yearly performance of solar cells deployed over large areas in either Tokyo, Japan or Phoenix, Ariz.

"Surface reflections are an essential loss for any type of photovoltaic module, and ultimately low reflections are desired," says Noboru Yamada, a scientist at Nagaoka University of Technology Japan, who led the research with colleagues at Mitsubishi Rayon Co. Ltd. and Tokyo Metropolitan University.

The team chose to look at the effect of deploying this antireflective moth-eye film on solar cells in Phoenix and Tokyo because Phoenix is a "sunbelt" city, with high annual amount of direct sunlight, while Tokyo is well outside the sunbelt region with a high fraction of diffuse solar radiation.

They estimate that the films would improve the annual efficiency of solar cells by 6 percent in Phoenix and by 5 percent in Tokyo.

"People may think this improvement is very small, but the efficiency of photovoltaics is just like fuel consumption rates of road vehicles," says Yamada. "Every little bit helps."

Yamada and his colleagues found the inspiration for this new technology a few years ago after they began looking for a broad-wavelength and omnidirectional antireflective structure in nature. The eyes of the moth were the best they found.

The difficulty in making the film, says Yamada, was designing a seamless, high-throughput roll-to-roll process for nanoimprinting the film. This was ultimately solved by Hideki Masuda, one of the authors on the Energy Express paper, and his colleagues at Mitsubishi Rayon Co. Ltd.

The team is now working on improving the durability of the film and optimizing it for many different types of solar cells. They also believe the film could be applied as an anti-reflection coating to windows and computer displays.

Paper: "Characterization of antireflection moth-eye film on crystalline silicon photovoltaic module," Noboru Yamada, Toshikazu Ijiro, Eiko Okamoto, Kentaro Hayashi, and Hideki Masuda, Optics Express, Vol. 19, Issue S2, pp. A118-A125. Available at: http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-102-A118.

EDITOR'S NOTE: A hi-resolution image of several rolls of this antireflective film is available for use by journalists. Please contact astark@osa.org.

About OSA

Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit http://www.osa.org.

Angela Stark | EurekAlert!
Further information:
http://www.osa.org

Further reports about: OSA Optic PHOENIX Venus Express insect optical data solar cells

More articles from Physics and Astronomy:

nachricht Magnetic field traces gas and dust swirling around supermassive black hole
22.02.2018 | Royal Astronomical Society

nachricht UMass Amherst physicists contribute to dark matter detector success
22.02.2018 | University of Massachusetts at Amherst

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>