Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Innovative Push for High Power Femtosecond Lasers

Researchers at the Laser Zentrum Hannover e.V. (LZH) are developing the world’s first 2 ìm femtosecond laser source with pulse energies in the ìJ range.

or nearly 20 years, the advantages of using ultrashort laser radiation have been known. Due to fact that the pulsed have been shortened extremely, very high peak intensities can be reached, even for low pulse energies.

The effects are significant: materials can be precisely cut and removed, without causing thermal damage to the material. This is already being used for many different applications, for example for eye surgery. Cornea transplants using the fs laser have been common place for years.

And since 2011, the systems have been used to treat cataracts. Also, industry has profited from the advantages of ultrashort pulsed laser systems. These systems have been used, for example, to produce significantly more effective solar cells, or for improving expensive wafers used for chip production.

By expanding the emission spectrum of an fs laser into the spectral range of 2 µm, but simultaneously keeping the high pulse energies, the LZH wants to open the door for completely new fields of application, such as in micro-material processing, in medical technology, or in nanotechnology. Economic success is estimated to be high, and this „eye safe“ wavelength also offers a further advantage. Safety measures which are normally expensive and place limitations on production are relatively inexpensive for applications with this laser.

The concrete goal of the work in the Laser Development Department of the LZH is to construct a compact, regenerative, ultrashort pulse amplifier, emitting in the wavelength range around 2 µm, with pulse energies up to 50 µJ and pulse durations below 500 fs. As a seed laser, the scientists use an fs oscillator based on thulium doted fibers, with an output energy of 1-2 nJ, which is then amplified to 25 nJ. Directly following regenerative amplification, non-linear frequency conversion in the wavelength range of 3 to 6 µm is induced, in an optical parametric generator or amplifier (OPG/OPA). Gallium arsenide (GaAs) or zinc germanium phosphite (ZGP) are used as non-linear crystals.

“Our goal is a 2 µm fs laser system emitting in the mid-infrared range,” explains Dr. Dieter Wandt, head of the Ultrafast Photonics Group, which is working on this laser. “These wavelengths have a great growth potential.” Wandt says that polymer processing is one important field of application. Using IR radiation, polymers can be cut or welded without using additives. For German laser manufacturers, this basic know-how should provide a decisive advantage in the international competition surrounding ultrashort laser pulses.

The activities of the LZH are par of the project „Concepts for ultrashort pulsed beam sources of the next generation – Next Generation of Ultrafast Sources” NEXUS. Funding comes from the initiative “Ultrashort pulse laser for highly precise manufacturing” of the BMBF, until 2015.Apart from the laser institute in Hannover, project partners include the Friedrich Schiller University in Jena, the Leibniz University Hannover and the Ludwig-Maximilians University in Munich.

Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover, Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | idw
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>