Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative Push for High Power Femtosecond Lasers

27.07.2012
Researchers at the Laser Zentrum Hannover e.V. (LZH) are developing the world’s first 2 ìm femtosecond laser source with pulse energies in the ìJ range.

or nearly 20 years, the advantages of using ultrashort laser radiation have been known. Due to fact that the pulsed have been shortened extremely, very high peak intensities can be reached, even for low pulse energies.

The effects are significant: materials can be precisely cut and removed, without causing thermal damage to the material. This is already being used for many different applications, for example for eye surgery. Cornea transplants using the fs laser have been common place for years.

And since 2011, the systems have been used to treat cataracts. Also, industry has profited from the advantages of ultrashort pulsed laser systems. These systems have been used, for example, to produce significantly more effective solar cells, or for improving expensive wafers used for chip production.

By expanding the emission spectrum of an fs laser into the spectral range of 2 µm, but simultaneously keeping the high pulse energies, the LZH wants to open the door for completely new fields of application, such as in micro-material processing, in medical technology, or in nanotechnology. Economic success is estimated to be high, and this „eye safe“ wavelength also offers a further advantage. Safety measures which are normally expensive and place limitations on production are relatively inexpensive for applications with this laser.

The concrete goal of the work in the Laser Development Department of the LZH is to construct a compact, regenerative, ultrashort pulse amplifier, emitting in the wavelength range around 2 µm, with pulse energies up to 50 µJ and pulse durations below 500 fs. As a seed laser, the scientists use an fs oscillator based on thulium doted fibers, with an output energy of 1-2 nJ, which is then amplified to 25 nJ. Directly following regenerative amplification, non-linear frequency conversion in the wavelength range of 3 to 6 µm is induced, in an optical parametric generator or amplifier (OPG/OPA). Gallium arsenide (GaAs) or zinc germanium phosphite (ZGP) are used as non-linear crystals.

“Our goal is a 2 µm fs laser system emitting in the mid-infrared range,” explains Dr. Dieter Wandt, head of the Ultrafast Photonics Group, which is working on this laser. “These wavelengths have a great growth potential.” Wandt says that polymer processing is one important field of application. Using IR radiation, polymers can be cut or welded without using additives. For German laser manufacturers, this basic know-how should provide a decisive advantage in the international competition surrounding ultrashort laser pulses.

The activities of the LZH are par of the project „Concepts for ultrashort pulsed beam sources of the next generation – Next Generation of Ultrafast Sources” NEXUS. Funding comes from the initiative “Ultrashort pulse laser for highly precise manufacturing” of the BMBF, until 2015.Apart from the laser institute in Hannover, project partners include the Friedrich Schiller University in Jena, the Leibniz University Hannover and the Ludwig-Maximilians University in Munich.

Contact:
Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover, Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | idw
Further information:
http://www.lzh.de

More articles from Physics and Astronomy:

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

nachricht Large, distant comets more common than previously thought
26.07.2017 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>