Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared camera provides a better view

06.07.2010
At night on an unlit country road: the bends in the road restrict the view ahead and, to make things worse, it is foggy. The car driver is exercising all due care and yet still does not see the deer on the road ahead until it is nearly too late.

An emergency stop prevents a collision with the animal just in time. In such situations infrared cameras could provide a better level of safety. Objects at roughly body temperature are luminous in the infrared region at a wavelength of around ten micrometers. Detectors in the camera register this thermal radiation and locate the source of heat. This could enable drivers to see people or animals long before they come into vision through dipped headlights. Other road users would not be inconvenienced by the invisible infrared radiation.

The problem is that infrared cameras for the wavelength range above five micrometers like it cold – the sensor has to be constantly cooled down to about minus 193 degrees Celsius. Uncooled imagers for the long-wave infrared range do already exist today, but they are mainly used in the military sphere and are more or less unavailable on the European market. This is now set to change. Research scientists at the Fraunhofer Institute for Microelectronic Circuits and Systems IMS in Duisburg have succeeded in producing an imaging sensor for the long-wave infrared range that functions at room temperature. »We could be the first in Germany to offer this technology«, says Dr. Dirk Weiler, scientist at the IMS.

At the heart of the IRFPA (Infrared Focal Plane Array) sensor is a microbolometer – a temperature-sensitive detector that absorbs long-wave infrared light. To produce a two-dimensional image, several microbolometers are combined to form an array. If the microbolometer absorbs light from a heat source, its interior temperature rises and its electrical resistance changes. A readout chip then converts this resistance value directly into a digital signal. Previously this was not possible without a further intermediate step – normally the electrical pulse is first translated into an analog signal and then digitized using an analog/digital converter. »We use a very specific type of converter, a sigma-delta converter, in our imager. This has enabled us to produce a digital signal directly«, Weiler explains.

As complex and costly cooling is no longer required, further areas of application become feasible beyond the automotive sector. »Mobile devices in particular should benefit from the new development«, states Weiler confidently. The fact that the cooling mechanism is no longer needed not only saves weight. The battery power available and therefore the operating time of the mobile device increase because no energy is needed for cooling. The potential uses of mobile infrared cameras include firefighting, where they could detect hidden hotspots or locate people in smoke-filled buildings.

Initial laboratory tests with the new sensor element were successful. The research scientists have already been able to produce a number of infrared images.

Dirk Weiler | alfa
Further information:
http://www.fraunhofer.de/en/press/research-news/2010/07/infrared-camera.jsp

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>