Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared camera provides a better view

06.07.2010
At night on an unlit country road: the bends in the road restrict the view ahead and, to make things worse, it is foggy. The car driver is exercising all due care and yet still does not see the deer on the road ahead until it is nearly too late.

An emergency stop prevents a collision with the animal just in time. In such situations infrared cameras could provide a better level of safety. Objects at roughly body temperature are luminous in the infrared region at a wavelength of around ten micrometers. Detectors in the camera register this thermal radiation and locate the source of heat. This could enable drivers to see people or animals long before they come into vision through dipped headlights. Other road users would not be inconvenienced by the invisible infrared radiation.

The problem is that infrared cameras for the wavelength range above five micrometers like it cold – the sensor has to be constantly cooled down to about minus 193 degrees Celsius. Uncooled imagers for the long-wave infrared range do already exist today, but they are mainly used in the military sphere and are more or less unavailable on the European market. This is now set to change. Research scientists at the Fraunhofer Institute for Microelectronic Circuits and Systems IMS in Duisburg have succeeded in producing an imaging sensor for the long-wave infrared range that functions at room temperature. »We could be the first in Germany to offer this technology«, says Dr. Dirk Weiler, scientist at the IMS.

At the heart of the IRFPA (Infrared Focal Plane Array) sensor is a microbolometer – a temperature-sensitive detector that absorbs long-wave infrared light. To produce a two-dimensional image, several microbolometers are combined to form an array. If the microbolometer absorbs light from a heat source, its interior temperature rises and its electrical resistance changes. A readout chip then converts this resistance value directly into a digital signal. Previously this was not possible without a further intermediate step – normally the electrical pulse is first translated into an analog signal and then digitized using an analog/digital converter. »We use a very specific type of converter, a sigma-delta converter, in our imager. This has enabled us to produce a digital signal directly«, Weiler explains.

As complex and costly cooling is no longer required, further areas of application become feasible beyond the automotive sector. »Mobile devices in particular should benefit from the new development«, states Weiler confidently. The fact that the cooling mechanism is no longer needed not only saves weight. The battery power available and therefore the operating time of the mobile device increase because no energy is needed for cooling. The potential uses of mobile infrared cameras include firefighting, where they could detect hidden hotspots or locate people in smoke-filled buildings.

Initial laboratory tests with the new sensor element were successful. The research scientists have already been able to produce a number of infrared images.

Dirk Weiler | alfa
Further information:
http://www.fraunhofer.de/en/press/research-news/2010/07/infrared-camera.jsp

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>