Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared camera provides a better view

06.07.2010
At night on an unlit country road: the bends in the road restrict the view ahead and, to make things worse, it is foggy. The car driver is exercising all due care and yet still does not see the deer on the road ahead until it is nearly too late.

An emergency stop prevents a collision with the animal just in time. In such situations infrared cameras could provide a better level of safety. Objects at roughly body temperature are luminous in the infrared region at a wavelength of around ten micrometers. Detectors in the camera register this thermal radiation and locate the source of heat. This could enable drivers to see people or animals long before they come into vision through dipped headlights. Other road users would not be inconvenienced by the invisible infrared radiation.

The problem is that infrared cameras for the wavelength range above five micrometers like it cold – the sensor has to be constantly cooled down to about minus 193 degrees Celsius. Uncooled imagers for the long-wave infrared range do already exist today, but they are mainly used in the military sphere and are more or less unavailable on the European market. This is now set to change. Research scientists at the Fraunhofer Institute for Microelectronic Circuits and Systems IMS in Duisburg have succeeded in producing an imaging sensor for the long-wave infrared range that functions at room temperature. »We could be the first in Germany to offer this technology«, says Dr. Dirk Weiler, scientist at the IMS.

At the heart of the IRFPA (Infrared Focal Plane Array) sensor is a microbolometer – a temperature-sensitive detector that absorbs long-wave infrared light. To produce a two-dimensional image, several microbolometers are combined to form an array. If the microbolometer absorbs light from a heat source, its interior temperature rises and its electrical resistance changes. A readout chip then converts this resistance value directly into a digital signal. Previously this was not possible without a further intermediate step – normally the electrical pulse is first translated into an analog signal and then digitized using an analog/digital converter. »We use a very specific type of converter, a sigma-delta converter, in our imager. This has enabled us to produce a digital signal directly«, Weiler explains.

As complex and costly cooling is no longer required, further areas of application become feasible beyond the automotive sector. »Mobile devices in particular should benefit from the new development«, states Weiler confidently. The fact that the cooling mechanism is no longer needed not only saves weight. The battery power available and therefore the operating time of the mobile device increase because no energy is needed for cooling. The potential uses of mobile infrared cameras include firefighting, where they could detect hidden hotspots or locate people in smoke-filled buildings.

Initial laboratory tests with the new sensor element were successful. The research scientists have already been able to produce a number of infrared images.

Dirk Weiler | alfa
Further information:
http://www.fraunhofer.de/en/press/research-news/2010/07/infrared-camera.jsp

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>