Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An Incredible Shrinking Material

08.11.2011
Caltech Engineers Reveal How Scandium Trifluoride Contracts with Heat

They shrink when you heat 'em. Most materials expand when heated, but a few contract. Now engineers at the California Institute of Technology (Caltech) have figured out how one of these curious materials, scandium trifluoride (ScF3), does the trick—a finding, they say, that will lead to a deeper understanding of all kinds of materials.


Heat causes the atoms in ScF3 to vibrate, as captured in this snapshot from a simulation. Fluorine atoms are in green while scandium atoms are in yellow.
[Credit: Caltech/C. Li et al.]

The researchers, led by graduate student Chen Li, published their results in the November 4 issue of Physical Review Letters (PRL).

Materials that don't expand under heat aren't just an oddity. They're useful in a variety of applications—in mechanical machines such as clocks, for example, that have to be extremely precise. Materials that contract could counteract the expansion of more conventional ones, helping devices remain stable even when the heat is on.

"When you heat a solid, most of the heat goes into the vibrations of the atoms," explains Brent Fultz, professor of materials science and applied physics and a coauthor of the paper. In normal materials, this vibration causes atoms to move apart and the material to expand. A few of the known shrinking materials, however, have unique crystal structures that cause them to contract when heated, a property called negative thermal expansion. But because these crystal structures are complicated, scientists have not been able to clearly see how heat—in the form of atomic vibrations—could lead to contraction.

But in 2010 researchers discovered negative thermal expansion in ScF3, a powdery substance with a relatively simple crystal structure. To figure out how its atoms vibrated under heat, Li, Fultz, and their colleagues used a computer to simulate each atom's quantum behavior. The team also probed the material's properties by blasting it with neutrons at the Spallation Neutron Source at Oak Ridge National Laboratory (ORNL) in Tennessee; by measuring the angles and speeds with which the neutrons scattered off the atoms in the crystal lattice, the team could study the atoms' vibrations. The more the material is heated the more it contracts, so by doing this scattering experiment at increasing temperatures, the team learned how the vibrations changed as the material shrank.

The results paint a clear picture of how the material shrinks, the researchers say. You can imagine the bound scandium and fluorine atoms as balls attached to one another with springs. The lighter fluorine atom is linked to two heavier scandium atoms on opposite sides. As the temperature is cranked up, all the atoms jiggle in many directions. But because of the linear arrangement of the fluorine and two scandiums, the fluorine vibrates more in directions perpendicular to the springs. With every shake, the fluorine pulls the scandium atoms toward each other. Since this happens throughout the material, the entire structure shrinks.

The surprise, the researchers say, was that in the large fluorine vibrations, the energy in the springs is proportional to the atom's displacement—how far the atom moves while shaking—raised to the fourth power, a behavior known as a quartic oscillation. Most materials are dominated by quadratic (or harmonic) oscillations—characteristic of the typical back-and-forth motion of springs and pendulums—in which the stored energy is proportional to the square of the displacement.

"A nearly pure quantum quartic oscillator has never been seen in atom vibrations in crystals," Fultz says. Many materials have a little bit of quartic behavior, he explains, but their quartic tendencies are pretty small. In the case of ScF3, however, the team observed the quartic behavior very clearly. "A pure quartic oscillator is a lot of fun," he says. "Now that we've found a case that's very pure, I think we know where to look for it in many other materials." Understanding quartic oscillator behavior will help engineers design materials with unusual thermal properties. "In my opinion," Fultz says, "that will be the biggest long-term impact of this work."

The other authors of the PRL paper, "The structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3," are former Caltech postdoctoral scholars Xiaoli Tang and J. Brandon Keith; Caltech graduate students Jorge Muñoz and Sally Tracy; and Doug Abernathy of ORNL. The research was supported by the Department of Energy.

Click here: http://www.youtube.com/user/caltech#p/u/0/l46Kgm5u3Nw
for the video of the simulation.
Written by Marcus Woo
Deborah Williams-Hedges
626-395-3227
debwms@caltech.edu

Deborah Williams-Hedges | EurekAlert!
Further information:
http://www.caltech.edu
http://media.caltech.edu/press_releases/13466

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>