Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Increasing cosmic radiation may boost danger for manned missions to Mars


Humans have long dreamed of traveling to Mars, hopscotching across the solar system and fanning out into the cosmos beyond. Several nations and private organizations are developing plans for crewed Mars missions in the coming decades. But a new study shows that increasing levels of cosmic radiation spurred by weak solar activity could make such journeys more risky to the health of their crews, raising questions about the feasibility of those missions.

The new research finds that, during periods of low solar activity, a 30-year-old astronaut can spend roughly one year in space—just enough time to get to Mars and back—before the constant bombardment by cosmic rays pushes the risk of radiation-induced cancer above current exposure limits.

When the sun is active, its magnetic field intensifies. The magnetic field deflects galactic cosmic rays away from the solar system. If the sun’s activity continues to weaken, the number of days humans could safely spend in deep space could decrease by about 20 percent.

Credit: NASA

Artist’s rendition of the Lunar Reconnaissance Orbiter at the moon. The CRaTER telescope is seen pointing out at the bottom right center of the LRO spacecraft.

Credit: Chris Meaney/NASA

If the sun’s activity continues to weaken as many scientists predict, the number of days humans could spend in deep space before reaching their exposure limit could decrease by about 20 percent, making future crewed space flight more dangerous, according to the new study accepted for publication in Space Weather, a journal of the American Geophysical Union.

To estimate solar activity, scientists count sunspots— dark spots on the surface of the sun caused by bursts of magnetic activity. When the sun is active, the frequency of sunspots and eruptions of energetic matter from its surface increase, and the sun’s magnetic field intensifies.  The magnetic field deflects cosmic radiation away from the solar system, but a recent trend of declining solar activity means the sun’s magnetic field is weak. The weakened magnetic field allows more cosmic rays to overrun the solar system, increasing the radiation hazard to astronauts, according to the study’s authors. Solar activity reached its lowest level in the space age in 2009 during the last solar minimum, and scientists think the next minimum may shatter even those records as the sun grows more deeply subdued.

“While these conditions are not necessarily a showstopper for long-duration missions to the moon, an asteroid, or even Mars, galactic cosmic ray radiation in particular remains a significant and worsening factor that limits mission durations,” said Nathan Schwadron, associate professor at the Institute for the Study of Earth, Oceans, and Space and the Department of Physics at the University of New Hampshire in Durham, and lead author of the new paper.

“Cosmic rays are the most energetic particles in the universe,” said Richard Mewaldt, a physicist at the California Institute of Technology in Pasadena, who was not involved in the study. Supernova explosions in the far-off corners of the galaxy send galactic cosmic rays rocketing towards the solar system at nearly the speed of light. Their high energy allows these particles to penetrate nearly every material known to man, including shielding on space craft. When the cosmic rays penetrate that shielding, secondary particles are produced that can damage organs and lead to cancer, said Schwadron.

NASA sets limits on how much cosmic radiation exposure is safe for astronauts. Using measurements from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) aboard NASA’s Lunar Reconnaissance Orbiter, the study’s authors were able to estimate the amount of time it would take an astronaut to reach the agency’s maximum allowed radiation exposure. CRaTER uses a material called “tissue equivalent plastic” that mimics human muscle to gauge radiation dosage over time.

The researchers found it would take just under 400 days for a 30-year-old male astronaut to reach the maximum radiation dose, and just under 300 days for a 30-year-old female astronaut to reach the same dosage during the last solar minimum. If solar activity continues to decrease, causing cosmic radiation levels to increase, those numbers could drop to less than 320 days for a 30-year-old man and less than 240 days for a 30-year-old woman in four to six years, according to the new study. These numbers will vary with both the age of the astronauts and the sun’s activity level, the study notes.

Schwadron and his colleagues were motivated to examine the implications of weak solar behavior on human space exploration after solar physicists started raising the possibility that the current solar cycle – the weakest 11-year cycle in more than 80 years – could be part of a long-term trend of declining solar activity.

During the 2009 solar minimum, the sunspot number went down to its lowest level in 100 years, and the magnetic field was the weakest that it had been in the space era, according to Mewaldt.

Now the sun is entering what many are calling the “mini-maximum”, anticipated to be the smallest solar maximum that modern scientists have ever directly observed, according to Schwadron.

“Over time, it’s become increasingly clear that the space environment is not returning to normal,” Schwadron said. “There’s been a sustained change in the way the sun is behaving.”

Extended periods of below-normal solar activity have occurred in the past, most notably during the 80-year Maunder minimum, which began in the mid-1600s and was marked by a near total absence of sunspots.

Schwadron cautioned that the projections outlined in the new study are tentative, and they are not definitive forecasts of how long future space flights should last. But they do demonstrate how the changing solar environment could impact space travel.

“[This research] is helping us,” Schwadron said, “to prepare for and plan for human exploration in the future.”


The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 62,000 members in 144 countries. Join our conversation on FacebookTwitter, YouTube, and other social media channels.

Notes for Journalists

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this article by clicking on this link:

Or, you may order a copy of the final paper by emailing your request to Kate Wheeling at Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.


“Does the worsening galactic cosmic radiation environment observed by CRaTER preclude future manned deep-space exploration?”

Nathan Schwadron: University of New Hampshire, Space Science Center, Durham, NH, USA;

J. B. Blake: The Aerospace Corporation, El Segundo, CA, USA;

A. W. Case: High Energy Astrophysics division, Harvard Smithsonian Center for Astrophysics, Cambridge, MA, USA;

C. Joyce: University of New Hampshire, Space Science Center, Durham, NH, USA;

J. Kasper: High Energy Astrophysics division, Harvard Smithsonian Center for Astrophysics, Cambridge, MA, USA; Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI, USA;

J. Mazur: The Aerospace Corporation, El Segundo, CA, USA;

N. Petro: Goddard Space Flight Center, Greenbelt, MD, USA;

M. Quinn: University of New Hampshire, Space Science Center, Durham, NH, USA;

J. A. Porter: Dept of Nuclear Engineering, University of Tennessee, Knoxville, TN, USA;

C. Smith, S. Smith, and H. E. Spence: University of New Hampshire, Space Science Center, Durham, NH, USA;

L. W. Townsend: Dept of Nuclear Engineering, University of Tennessee, Knoxville, TN, USA;

R. Turner: Analytic Services Inc, Arlington, VA, USA;

C. Zeitlin: Southwest Research Institute, Earth Oceans and Space Science, University of New Hampshire, Durham, NH, USA.

Contact information for the authors:
Nathan Schwadron: +1 (603) 862-3451;

AGU Contact:

Kate Wheeling
+1 (202) 777-7516

University of New Hampshire Contact:
David Sims
+1 (603) 862-5369

Kate Wheeling | American Geophysical Union

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>