Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Important step in the next generation of computing

Research reveals vital insight into spintronics

Scientists have taken one step closer to the next generation of computers. Research from the Cavendish Laboratory, the University of Cambridge's Department of Physics, provides new insight into spintronics, which has been hailed as the successor to the transistor.

Spintronics, which exploits the electron's tiny magnetic moment, or 'spin', could radically change computing due to its potential of high-speed, high-density and low-power consumption. The new research sheds light on how to make 'spin' more efficient.

For the past fifty years, progress in electronics has relied heavily on the downsizing of the transistor through the semiconductor industry in order to provide the technology for the small, powerful computers that are the basis of our modern information society. In a 1965 paper, Intel co-founder Gordon E. Moore described how the number of transistors that could be placed inexpensively on an integrated circuit had doubled every year between 1958 and 1965, predicting that the trend would continue for at least ten more years.

That prediction, now known as Moore's Law, effectively described a trend that has continued ever since, but the end of that trend—the moment when transistors are as small as atoms, and cannot be shrunk any further—is expected as early as 2015. At the moment, researchers are seeking new concepts of electronics that sustain the growth of computing power.

Spintronics research attempts to develop a spin-based electronic technology that will replace the charge-based technology of semiconductors. Scientists have already begun to develop new spin-based electronics, beginning with the discovery in 1988 of giant magnetoresistance (GMR) effect. The discovery of GMR effect brought about a breakthrough in gigabyte hard disk drives and was also key in the development of portable electronic devices such as the iPod.

While conventional technology relies on harnessing the charge of electrons, the field of spintronics depends instead on the manipulation of electrons' spin. One of the unique properties in spintronics is that spins can be transferred without the flow of electric charge currents. This is called "spin current" and unlike other concepts of harnessing electrons, the spin current can transfer information without generating heat in electric devices. The major remaining obstacle to a viable spin current technology is the difficulty of creating a volume of spin current large enough to support current and future electronic devices.

However, the new Cambridge researchers in close collaboration with Professor Sergej Demokritov group at the University of Muenster, Germany, have, in part, addressed this issue. In order to create enhanced spin currents, the researchers used the collective motion of spins called spin waves (the wave property of spins). By bringing spin waves into interaction, they have demonstrated a new, more efficient way of generating spin current.

Dr Hidekazu Kurebayashi, from the Microelectronics Group at the Cavendish Laboratory, said: "You can find lots of different waves in nature, and one of the fascinating things is that waves often interact with each other. Likewise, there are a number of different interactions in spin waves. Our idea was to use such spin wave interactions for generating efficient spin currents."

According to their findings, one of the spin wave interactions (called three-magnon splitting) generates spin current ten times more efficiently than using pre-interacting spin-waves. Additionally, the findings link the two major research fields in spintronics, namely the spin current and the spin wave interaction.

For additional information please contact:
Dr Hidekazu Kurebayashi
Tel: direct, +44 (0) 1223 337496
Notes to editors:
"Controlled enhancement of spin-current emission by three-magnon splitting" by H. Kurebayashi et al. has been scheduled for Advance Online Publication (AOP) on Nature Materials's website on 03 July at 1800 London time / 1300 US Eastern time.

Hidekazu Kurebayashi | EurekAlert!
Further information:

Further reports about: GMR Laboratory electronic devices wave interactions

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>