Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IMEC paves the way towards optical sensing foils

07.10.2008
IMEC’s associated laboratory at the Ghent University, INTEC, has made the first functional optical links embedded in a flexible substrate. The links include optical waveguides, light sources, and detectors.

With this technique, it becomes possible to make foils that sense changes in pressure. Such sensing, skin-like foils could be used for monitoring irregular or moving surfaces, e.g. in robots, pliable machinery, or as an artificial skin.

Integrated optical interconnections have the advantage that they are insensitive to electromagnetic interference, applicable in harsh environments, and highly sensitive. Last year, IMEC already reported embedded optical links on rigid surfaces. The current research takes optoelectronics one step further. Standard commercially available GaAs photodetectors and GaAs VCSELs (vertical-cavity surface-emitting laser) are thinned down to 30µm. Next, they are embedded into a flexible foil of optical transparent material and optically coupled with embedded waveguides and out-of-plane micromirrors. The resulting structure shows good adhesion and flexible behavior.

With this technology, IMEC is working on two types of sensors: array waveguide sensors and optical fiber sensors. Both can be used for sensor foils. Array waveguide sensors rely on the change in coupling between arrays of crossing waveguides. Two layers of polymer waveguides are separated by a thin layer of soft silicone. When no pressure is applied, no crosstalk is detected. But when pressure is applied to the foil, the distance between the waveguides in the separated layers decreases, and light is transmitted from one layer to the other. This low-cost sensor is ideally suited for high-density pressure sensors on small areas.

Optical sensing foils combine two technologies that have lately seen a growing interest: integrated optical interconnections, and flexible, stretchable electronics. The ambition of researchers is to create a flexible and stretchable skin-like foil sensitive to touch, pressure, or deformation. Such artificial skin could be used in medical and industrial environments. To this aim, a group of European research institutes, including IMEC, are collaborating in the 7th Framework project PHOSFOS (Photonic Skins For Optical Sensing).

PHOSFOS will develop photonic foils based on optical fiber sensors. These foils are targeted at applications in civil engineering and medicine. They will, for example, continuously monitor the integrity and the behavior of buildings, dams, bridges, roads, or tunnels. Other uses are monitoring aircraft wings, helicopter blades, or windmill blades. They will enable early warning of failure or anomaly. Skin-like PHOSFOS membranes will also be used in long-term monitoring of respiration and cardiac activity, as well as the detection of pressure points under bed-ridden patients.

About IMEC
IMEC is a world-leading independent research center in nanoelectronics and nanotechnology. IMEC vzw is headquartered in Leuven, Belgium, has a sister company in the Netherlands, IMEC-NL, offices in the US, China and Taiwan, and representatives in Japan. Its staff of more than 1600 people includes more than 500 industrial residents and guest researchers. In 2007, its revenue (P&L) was EUR 244.5 million.
IMEC’s More Moore research aims at semiconductor scaling towards sub-32nm nodes. With its More than Moore research, IMEC looks into technologies for nomadic embedded systems, wireless autonomous transducer solutions, biomedical electronics, photovoltaics, organic electronics and GaN power electronics.

IMEC’s research bridges the gap between fundamental research at universities and technology development in industry. Its unique balance of processing and system know-how, intellectual property portfolio, state-of-the-art infrastructure and its strong network worldwide position IMEC as a key partner for shaping technologies for future systems.

Katrien Marent | alfa
Further information:
http://www.imec.be
http://www2.imec.be/imec_com/imec_paves_the_way_towards_optical_sensing_foils.php

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>