Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imagining how light behaves in a 2-D world gives researchers insights for faster 3-D rendering

07.08.2012
Techniques promise higher quality imagery for games, movies

Though sophisticated three-dimensional imagery is abundant in computer-generated games and movies, a group of researchers from Disney Research, Zürich, University of California, San Diego, Limbic Software, and RWTH Aachen University say they have gained insights to improve the rendering of those images by envisioning a flat, two-dimensional world.

The fundamental physics of light is easier to understand in that 2D world than in a 3D environment, they said, and enabled them to develop simplified equations for governing the behavior of light. This in turn allowed the team of researchers to find practical improvements to 3D photorealistic rendering techniques which improved their speed and quality.

"Rendering techniques have become so incredibly sophisticated and complex that skilled artists can now easily create photorealistic depictions of synthetic worlds and are limited only by their imaginations," said Dr. Wojciech Jarosz, research scientist at Disney Research, Zürich and coauthor of the work. Ultimately, all of these rendering techniques simulate how light would bounce around in a virtual environment. This physical lighting simulation is what allows these computer-generated images to look so convincingly photorealistic. "Unfortunately, these methods can often be incredibly slow, taking hours to simulate a single frame of a movie, and the physical processes they try to mimic are incredibly complex," he added.

This increased complexity not only limits artists, but hampers researchers such as Jarosz who pursue improved approaches and can make it more difficult to discuss and teach the underlying concepts. To address this ever increasing complexity, the team of researchers decided to go back to basics. They imagined how light would behave in a fictional two-dimensional world to avoid dealing with the harsh complexities of how light behaves in our physical 3D world.

"It turns out that we can define a 2D world where light behaves much the same way as it does in our 3D reality — however, all the fundamental equations governing the physics of light become significantly simpler," Jarosz explained. This seemingly frivolous exercise actually provides tangible benefits for developing better 3D rendering techniques. All the common rendering techniques can be analyzed in this simplified 2D setting and their weaknesses and strengths can be more easily discovered.

In addition to improving 3D rendering techniques, Jarosz, who is also an adjunct lecturer at ETH, the Swiss Federal Institute of Technology, speculates that the simplified view of the physics of light could also serve as a good teaching tool within computer graphics curricula at universities.

These ideas will be presented Aug. 7 in the "Sampling, Reconstructing, and Filtering Light" session at SIGGRAPH 2012, the International Conference on Computer Graphics and Interactive Techniques at the Los Angeles Convention Center. For a copy of the research paper, please visit the project website at http://zurich.disneyresearch.com/~wjarosz/publications/jarosz12theory.html.

About Disney Research
Disney Research is a network of research laboratories supporting The Walt Disney Company. Its purpose is to pursue scientific and technological innovation to advance the company's broad media and entertainment efforts. Disney Research is managed by an internal Disney Research Council co-chaired by Disney-Pixar's Ed Catmull and Walt Disney Imagineering's Bruce Vaughn, and including the directors of the individual labs. It has facilities in Los Angeles, San Francisco, Pittsburgh, Boston and Zurich. Research topics include computer graphics, video processing, computer vision, robotics, radio and antennas, wireless communications, human-computer interaction, displays, data mining, machine learning and behavioral sciences.

Jennifer Liu | EurekAlert!
Further information:
http://www.disney.com
http://zurich.disneyresearch.com/~wjarosz/publications/jarosz12theory.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>