Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Igniting a supernova explosion

01.08.2014

High-energy observations with the INTEGRAL space observatory have revealed a surprising signal of gamma-rays from the surface of material ejected by a recent supernova explosion.

This result challenges the prevailing explosion model for type Ia supernovae, indicating that such energetic events might be ignited from the outside as well – rather than from the exploding dwarf star’s centre. The scientists from the Max Planck Institutes for Extraterrestrial Physics and for Astrophysics present their findings in the current edition of Science to the astronomical community.


Artist's conception of a binary system, where a mass overflow from a donor star onto a white dwarf star may occur. Once enough accreted matter has accumulated on the surface of the dwarf star, this may initiate a nuclear explosion, which in turn would ignite the catastrophic nuclear burning and disruption of the dwarf star: a supernova of type Ia.

Credit: European Space Agency and Justyn R. Maund (University of Cambridge)

In January, a supernova explosion, called SN2014J, was reported in a nearby starburst galaxy, called M82. Just two weeks later, astronomers were able to take data with the INTEGRAL space telescope, revealing two characteristic gamma-ray lines from a radioactive nickel isotope (56Ni).

Supernovae are giant nuclear fusion furnaces, and the atomic nuclei of nickel are believed to be the main product of nuclear fusion inside the supernova. Presumably this radioactive element is created mainly in the centre of the exploding white dwarf star and therefore occulted from direct observation. As the explosion dilutes the entire stellar material, the outer layers get more and more transparent, and after several weeks to months also gamma-rays from the nickel decay chain are expected to be accessible to observation.

As the astronomers scrutinized the new data, however, they found traces of the decay of radioactive nickel just 15 days after the presumable explosion date. This implies that the observed material was near the surface of the explosion, which was a surprise. 

“For quite a while, we were puzzled by this surprising signal”, says Roland Diehl from the Max Planck Institute for Extraterrestrial Physics, the lead author of the study and Principal Investigator of the INTEGRAL spectrometer instrument. “But we could not find anything wrong, rather the gamma-ray lines from 56Ni faded away as expected after a few days, and clearly came from the direction of the supernova”, he explains the outcome of their analysis of the observations. At MPE, an expert analysis team has been developing special methods for high-resolution spectroscopy of gamma-ray lines for many years. This has been successfully applied to the study of nucleosynthesis throughout our Galaxy as well as for the Cassiopeia A supernova remnant - and now to the recent supernova observations.

“We know that the supernova burns an entire white dwarf star within a second, but we are not sure how the explosion is ignited in the first place”, explains Wolfgang Hillebrandt, a co-author of the study from the Max Planck Institute for Astrophysics. “A companion star’s action seems required”, he continues, “and for a while, we believed that only those white dwarfs explode, which are loaded with material from the companion star until they reach a critical limiting mass.” But then, the explosion would be ignited in the core of the white dwarf, and no nuclear fusion products should be seen on the outside. 

Diehl, Hillebrandt, and their colleagues had argued over the result for a while, challenging the methods of data analysis as well as ideas about supernova explosion scenarios. They now report their finding, supported by statistical arguments, and their descriptions of their methods to help scientists judge this important discovery. They conclude that those gamma-rays shed new light on how a binary companion’s material flow can ignite such a supernova from outside, and without demand for exceeding a critical mass limit for white dwarf stars.

From the early appearance of the nickel gamma-rays it seems that some modest amount of outer material accreted from the companion star ignited, and was processed to fusion ashes including the observed nickel. This primary explosion then must have triggered the main supernova, which was also observed with a variety of telescopes at many other wavelength bands, and appears as a rather normal supernova in these observations.

Gamma-rays from radioactive decay directly trace nuclear fusion ashes, and thus make a unique contribution to what we can learn about such explosions. The scenario that the astrophysicists describe ties in with recent belief that rather rapid material flows such as they occur in merging white dwarfs may often be the origins of supernovae of this type.

About INTEGRAL

The INTEGRAL gamma-ray space observatory was launched in 2002 for a nominal 3-year mission, and now, after almost 12 years, is still in good shape for many more years of observations. Together with the partner institute IRAP/CESR in Toulouse, MPE was responsible for one of the two main telescopes, the SPI spectrometer. INTEGRAL has discovered many new sources of the violent high-energy universe, among them active galaxies, new classes of accreting binary systems and pulsars, gamma-ray bursters, and surveys of nucleosynthesis gamma-rays from different sources plus a puzzling signal from annihilation of antimatter. 

INTEGRAL is a mission of the European Space Agency ESA in cooperation with Russia and the United States.

Website: http://sci.esa.int/integral/

Contact 

Dr. Hannelore Hämmerle

MPE Pressesprecherin

Phone:+49 (0)89 30000 3980Fax:+49 (0)89 30000 3569
Email:pr@...

Max-Planck-Institut für extraterrestrische Physik, Garching

 

Prof. Dr. Roland Diehl

Phone:+49 89 30000 3850Fax:+49 89 30000 3569
Email:rod@...

Max-Planck-Institut für Extraterrestrische Physik, Garching 

 

Prof. Dr. Wolfgang Hillebrandt

Direktor a.D.

Phone:+49 89 30000 2200
Email:wfh@...

Max-Planck-Institut für Astrophysik, Garching

 Original publication

1

R. Diehl,Th. Siegert,W. Hillebrandt et al.
Science 31 July 2014; 10.1126/science.1254738

Dr. Hannelore Hämmerle | Max-Planck-Institut
Further information:
http://www.mpe.mpg.de/6136802/News_20140731

Further reports about: MPE Max-Planck-Institut Phone Physics dwarf gamma-rays observations

More articles from Physics and Astronomy:

nachricht Scientists take nanoparticle snapshots
11.02.2016 | DOE/Argonne National Laboratory

nachricht New paths for generation of ultracold molecules
11.02.2016 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

New method opens crystal clear views of biomolecules

11.02.2016 | Life Sciences

Scientists take nanoparticle snapshots

11.02.2016 | Physics and Astronomy

NASA sees development of Tropical Storm 11P in Southwestern Pacific

11.02.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>