Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Igniting a supernova explosion


High-energy observations with the INTEGRAL space observatory have revealed a surprising signal of gamma-rays from the surface of material ejected by a recent supernova explosion.

This result challenges the prevailing explosion model for type Ia supernovae, indicating that such energetic events might be ignited from the outside as well – rather than from the exploding dwarf star’s centre. The scientists from the Max Planck Institutes for Extraterrestrial Physics and for Astrophysics present their findings in the current edition of Science to the astronomical community.

Artist's conception of a binary system, where a mass overflow from a donor star onto a white dwarf star may occur. Once enough accreted matter has accumulated on the surface of the dwarf star, this may initiate a nuclear explosion, which in turn would ignite the catastrophic nuclear burning and disruption of the dwarf star: a supernova of type Ia.

Credit: European Space Agency and Justyn R. Maund (University of Cambridge)

In January, a supernova explosion, called SN2014J, was reported in a nearby starburst galaxy, called M82. Just two weeks later, astronomers were able to take data with the INTEGRAL space telescope, revealing two characteristic gamma-ray lines from a radioactive nickel isotope (56Ni).

Supernovae are giant nuclear fusion furnaces, and the atomic nuclei of nickel are believed to be the main product of nuclear fusion inside the supernova. Presumably this radioactive element is created mainly in the centre of the exploding white dwarf star and therefore occulted from direct observation. As the explosion dilutes the entire stellar material, the outer layers get more and more transparent, and after several weeks to months also gamma-rays from the nickel decay chain are expected to be accessible to observation.

As the astronomers scrutinized the new data, however, they found traces of the decay of radioactive nickel just 15 days after the presumable explosion date. This implies that the observed material was near the surface of the explosion, which was a surprise. 

“For quite a while, we were puzzled by this surprising signal”, says Roland Diehl from the Max Planck Institute for Extraterrestrial Physics, the lead author of the study and Principal Investigator of the INTEGRAL spectrometer instrument. “But we could not find anything wrong, rather the gamma-ray lines from 56Ni faded away as expected after a few days, and clearly came from the direction of the supernova”, he explains the outcome of their analysis of the observations. At MPE, an expert analysis team has been developing special methods for high-resolution spectroscopy of gamma-ray lines for many years. This has been successfully applied to the study of nucleosynthesis throughout our Galaxy as well as for the Cassiopeia A supernova remnant - and now to the recent supernova observations.

“We know that the supernova burns an entire white dwarf star within a second, but we are not sure how the explosion is ignited in the first place”, explains Wolfgang Hillebrandt, a co-author of the study from the Max Planck Institute for Astrophysics. “A companion star’s action seems required”, he continues, “and for a while, we believed that only those white dwarfs explode, which are loaded with material from the companion star until they reach a critical limiting mass.” But then, the explosion would be ignited in the core of the white dwarf, and no nuclear fusion products should be seen on the outside. 

Diehl, Hillebrandt, and their colleagues had argued over the result for a while, challenging the methods of data analysis as well as ideas about supernova explosion scenarios. They now report their finding, supported by statistical arguments, and their descriptions of their methods to help scientists judge this important discovery. They conclude that those gamma-rays shed new light on how a binary companion’s material flow can ignite such a supernova from outside, and without demand for exceeding a critical mass limit for white dwarf stars.

From the early appearance of the nickel gamma-rays it seems that some modest amount of outer material accreted from the companion star ignited, and was processed to fusion ashes including the observed nickel. This primary explosion then must have triggered the main supernova, which was also observed with a variety of telescopes at many other wavelength bands, and appears as a rather normal supernova in these observations.

Gamma-rays from radioactive decay directly trace nuclear fusion ashes, and thus make a unique contribution to what we can learn about such explosions. The scenario that the astrophysicists describe ties in with recent belief that rather rapid material flows such as they occur in merging white dwarfs may often be the origins of supernovae of this type.


The INTEGRAL gamma-ray space observatory was launched in 2002 for a nominal 3-year mission, and now, after almost 12 years, is still in good shape for many more years of observations. Together with the partner institute IRAP/CESR in Toulouse, MPE was responsible for one of the two main telescopes, the SPI spectrometer. INTEGRAL has discovered many new sources of the violent high-energy universe, among them active galaxies, new classes of accreting binary systems and pulsars, gamma-ray bursters, and surveys of nucleosynthesis gamma-rays from different sources plus a puzzling signal from annihilation of antimatter. 

INTEGRAL is a mission of the European Space Agency ESA in cooperation with Russia and the United States.



Dr. Hannelore Hämmerle

MPE Pressesprecherin

Phone:+49 (0)89 30000 3980Fax:+49 (0)89 30000 3569

Max-Planck-Institut für extraterrestrische Physik, Garching


Prof. Dr. Roland Diehl

Phone:+49 89 30000 3850Fax:+49 89 30000 3569

Max-Planck-Institut für Extraterrestrische Physik, Garching 


Prof. Dr. Wolfgang Hillebrandt

Direktor a.D.

Phone:+49 89 30000 2200

Max-Planck-Institut für Astrophysik, Garching

 Original publication


R. Diehl,Th. Siegert,W. Hillebrandt et al.
Science 31 July 2014; 10.1126/science.1254738

Dr. Hannelore Hämmerle | Max-Planck-Institut
Further information:

Further reports about: MPE Max-Planck-Institut Phone Physics dwarf gamma-rays observations

More articles from Physics and Astronomy:

nachricht Graphene microphone outperforms traditional nickel and offers ultrasonic reach
27.11.2015 | Institute of Physics

nachricht Tracking down the 'missing' carbon from the Martian atmosphere
25.11.2015 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>