Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Igniting a supernova explosion


High-energy observations with the INTEGRAL space observatory have revealed a surprising signal of gamma-rays from the surface of material ejected by a recent supernova explosion.

This result challenges the prevailing explosion model for type Ia supernovae, indicating that such energetic events might be ignited from the outside as well – rather than from the exploding dwarf star’s centre. The scientists from the Max Planck Institutes for Extraterrestrial Physics and for Astrophysics present their findings in the current edition of Science to the astronomical community.

Artist's conception of a binary system, where a mass overflow from a donor star onto a white dwarf star may occur. Once enough accreted matter has accumulated on the surface of the dwarf star, this may initiate a nuclear explosion, which in turn would ignite the catastrophic nuclear burning and disruption of the dwarf star: a supernova of type Ia.

Credit: European Space Agency and Justyn R. Maund (University of Cambridge)

In January, a supernova explosion, called SN2014J, was reported in a nearby starburst galaxy, called M82. Just two weeks later, astronomers were able to take data with the INTEGRAL space telescope, revealing two characteristic gamma-ray lines from a radioactive nickel isotope (56Ni).

Supernovae are giant nuclear fusion furnaces, and the atomic nuclei of nickel are believed to be the main product of nuclear fusion inside the supernova. Presumably this radioactive element is created mainly in the centre of the exploding white dwarf star and therefore occulted from direct observation. As the explosion dilutes the entire stellar material, the outer layers get more and more transparent, and after several weeks to months also gamma-rays from the nickel decay chain are expected to be accessible to observation.

As the astronomers scrutinized the new data, however, they found traces of the decay of radioactive nickel just 15 days after the presumable explosion date. This implies that the observed material was near the surface of the explosion, which was a surprise. 

“For quite a while, we were puzzled by this surprising signal”, says Roland Diehl from the Max Planck Institute for Extraterrestrial Physics, the lead author of the study and Principal Investigator of the INTEGRAL spectrometer instrument. “But we could not find anything wrong, rather the gamma-ray lines from 56Ni faded away as expected after a few days, and clearly came from the direction of the supernova”, he explains the outcome of their analysis of the observations. At MPE, an expert analysis team has been developing special methods for high-resolution spectroscopy of gamma-ray lines for many years. This has been successfully applied to the study of nucleosynthesis throughout our Galaxy as well as for the Cassiopeia A supernova remnant - and now to the recent supernova observations.

“We know that the supernova burns an entire white dwarf star within a second, but we are not sure how the explosion is ignited in the first place”, explains Wolfgang Hillebrandt, a co-author of the study from the Max Planck Institute for Astrophysics. “A companion star’s action seems required”, he continues, “and for a while, we believed that only those white dwarfs explode, which are loaded with material from the companion star until they reach a critical limiting mass.” But then, the explosion would be ignited in the core of the white dwarf, and no nuclear fusion products should be seen on the outside. 

Diehl, Hillebrandt, and their colleagues had argued over the result for a while, challenging the methods of data analysis as well as ideas about supernova explosion scenarios. They now report their finding, supported by statistical arguments, and their descriptions of their methods to help scientists judge this important discovery. They conclude that those gamma-rays shed new light on how a binary companion’s material flow can ignite such a supernova from outside, and without demand for exceeding a critical mass limit for white dwarf stars.

From the early appearance of the nickel gamma-rays it seems that some modest amount of outer material accreted from the companion star ignited, and was processed to fusion ashes including the observed nickel. This primary explosion then must have triggered the main supernova, which was also observed with a variety of telescopes at many other wavelength bands, and appears as a rather normal supernova in these observations.

Gamma-rays from radioactive decay directly trace nuclear fusion ashes, and thus make a unique contribution to what we can learn about such explosions. The scenario that the astrophysicists describe ties in with recent belief that rather rapid material flows such as they occur in merging white dwarfs may often be the origins of supernovae of this type.


The INTEGRAL gamma-ray space observatory was launched in 2002 for a nominal 3-year mission, and now, after almost 12 years, is still in good shape for many more years of observations. Together with the partner institute IRAP/CESR in Toulouse, MPE was responsible for one of the two main telescopes, the SPI spectrometer. INTEGRAL has discovered many new sources of the violent high-energy universe, among them active galaxies, new classes of accreting binary systems and pulsars, gamma-ray bursters, and surveys of nucleosynthesis gamma-rays from different sources plus a puzzling signal from annihilation of antimatter. 

INTEGRAL is a mission of the European Space Agency ESA in cooperation with Russia and the United States.



Dr. Hannelore Hämmerle

MPE Pressesprecherin

Phone:+49 (0)89 30000 3980Fax:+49 (0)89 30000 3569

Max-Planck-Institut für extraterrestrische Physik, Garching


Prof. Dr. Roland Diehl

Phone:+49 89 30000 3850Fax:+49 89 30000 3569

Max-Planck-Institut für Extraterrestrische Physik, Garching 


Prof. Dr. Wolfgang Hillebrandt

Direktor a.D.

Phone:+49 89 30000 2200

Max-Planck-Institut für Astrophysik, Garching

 Original publication


R. Diehl,Th. Siegert,W. Hillebrandt et al.
Science 31 July 2014; 10.1126/science.1254738

Dr. Hannelore Hämmerle | Max-Planck-Institut
Further information:

Further reports about: MPE Max-Planck-Institut Phone Physics dwarf gamma-rays observations

More articles from Physics and Astronomy:

nachricht Stellar desk in wave-like motion
08.10.2015 | Max Planck Institute for Astronomy, Heidelberg

nachricht Mysterious ripples found racing through planet-forming disk
08.10.2015 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

NASA provides an infrared look at Hurricane Joaquin over time

08.10.2015 | Earth Sciences

Theoretical computer science provides answers to data privacy problem

08.10.2015 | Information Technology

Stellar desk in wave-like motion

08.10.2015 | Physics and Astronomy

More VideoLinks >>>