Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An Icy Gaze into the Big Bang

18.03.2011
Scientists of the Institute for Quantum Optics and Quantum Information (IQOQI) in Innsbruck, Austria, have reached a milestone in the exploration of quantum gas mixtures.

In an international first, the research group led by Rudolf Grimm and Florian Schreck has succeeded in producing controlled strong interactions between two fermionic elements - lithium-6 and potassium-40. This model system not only promises to provide new insights into solid-state physics but also shows intriguing analogies to the primordial substance right after the Big Bang.


The research group led by Rudolf Grimm and Florian Schreck has succeeded in producing controlled strong interactions between two fermionic elements - lithium-6 (blue) and potassium-40 (red). Graphics: Ritsch

According to theory, the whole universe consisted of quark-gluon plasma in the first split seconds after the Big Bang. On the earth this cosmic primordial “soup” can be observed in big particle accelerators when, for example, the nuclei of lead atoms are accelerated to nearly the speed of light and smashed into each other, which results in particle showers that are investigated with detectors. Now the group of quantum physicists led by Prof. Rudolf Grimm and PhD Florian Schreck from the Institute for Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences together with Italian and Australian researchers has for the first time achieved strong controlled interactions between clouds of lithium-6 and potassium-40 atoms. Hence, they have established a model system that behaves in a similar way as the quark-gluon plasma, whose energy scale has a twenty times higher order of magnitude.

Hydrodynamic expansion

In 2008 already, the Innsbruck physicists found Feshbach resonances in an ultracold gas mixture consisting of lithium and potassium atoms, which they have used to modify quantum mechanical interactions between particles in a controlled way by applying a magnetic field. In the meantime, they have overcome all technical challenges and are now the first to also produce strong interactions between those particles. “The magnetic fields have to be adjusted precisely to one in 100000 and controlled accurately to achieve this result,“ explains Florian Schreck.

In the experiment the physicists prepare the ultracold gases of lithium-6 (Li) and potassium-40 (K) atoms in an optical trap and overlap them, with the smaller cloud of heavier K atoms residing in the centre of the Li cloud. After turning off the trap, the researchers observe the expansion of the quantum gases at different magnetic fields. “When the particles show a strong interaction, the gas clouds behave hydrodynamically,“ says Schreck. “An elliptical nucleus is formed in the centre of the particle cloud, where the potassium and lithium atoms interact. Moreover, the expansion velocity of the particles, which are different initially, become equal.“ According to theory, both phenomena suggest hydrodynamic behavior of the quantum gas mixture. “This behavior is the most striking phenomenon observed in quantum gases, when particles strongly interact,“ says Rudolf Grimm. “Therefore, this experiment opens up new research areas in the field of many-body physics.“

New possibilities for exciting experiments

High energy physicists have made these two observations as well when producing quark-gluon plasmas in particle accelerators. The Innsbruck quantum gas experiment can be regarded as a model system to investigate cosmic phenomena that occurred immediately after the Big Bang. “In addition and above all, we can also use this system to address many questions of solid-state physics,“ says Rudolf Grimm, who is going to further explore the quantum gas mixture with his research group. “The big goal is to produce quantum condensates, such as Bose-Einstein condensates consisting of molecules made up of lithium and potassium atoms. This will tremendously increase our capabilities to realize novel states of matter.“

The physicists have published their findings in the scientific journal Physical Review Letters. Their work is supported by the Austrian Science Fund (FWF) and the Special Research Area FoQuS, the European Science Foundation ESF within the framework of EuroQUAM, the Wittgenstein award granted by the FWF and the Austrian Ministry of Science.

Publication:
Hydrodynamic Expansion of a Strongly Interacting Fermi-Fermi Mixture. A. Trenkwalder, C. Kohstall, M. Zaccanti, D. Naik, A. I. Sidorov, F. Schreck, R. Grimm. Physical Review Letters 106, 115304 (2011)
DOI: 10.1103/PhysRevLett.106.115304
http://dx.doi.org/10.1103/PhysRevLett.106.115304
Illustration, photos and video interviews: http://bit.ly/iqoqi20110318
Contact:
Dr. Florian Schreck
Institute for Quantum Optics and Quantum Information
Austrian Academy of Sciences
Otto-Hittmair-Platz 1
6020 Innsbruck, Austria
Phone: +43 512 507-4715
Email: florian.schreck@uibk.ac.at
Web: http://www.ultracold.at/
Dr. Christian Flatz
Public Relations
Institute for Quantum Optics and Quantum Information
Austrian Academy of Sciences
Otto-Hittmair-Platz 1, 6020 Innsbruck, Austria
Mobil: +43 650 5777122
E-Mail: pr-iqoqi@oeaw.ac.at

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://www.iqoqi.at

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>