Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An Icy Gaze into the Big Bang

18.03.2011
Scientists of the Institute for Quantum Optics and Quantum Information (IQOQI) in Innsbruck, Austria, have reached a milestone in the exploration of quantum gas mixtures.

In an international first, the research group led by Rudolf Grimm and Florian Schreck has succeeded in producing controlled strong interactions between two fermionic elements - lithium-6 and potassium-40. This model system not only promises to provide new insights into solid-state physics but also shows intriguing analogies to the primordial substance right after the Big Bang.


The research group led by Rudolf Grimm and Florian Schreck has succeeded in producing controlled strong interactions between two fermionic elements - lithium-6 (blue) and potassium-40 (red). Graphics: Ritsch

According to theory, the whole universe consisted of quark-gluon plasma in the first split seconds after the Big Bang. On the earth this cosmic primordial “soup” can be observed in big particle accelerators when, for example, the nuclei of lead atoms are accelerated to nearly the speed of light and smashed into each other, which results in particle showers that are investigated with detectors. Now the group of quantum physicists led by Prof. Rudolf Grimm and PhD Florian Schreck from the Institute for Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences together with Italian and Australian researchers has for the first time achieved strong controlled interactions between clouds of lithium-6 and potassium-40 atoms. Hence, they have established a model system that behaves in a similar way as the quark-gluon plasma, whose energy scale has a twenty times higher order of magnitude.

Hydrodynamic expansion

In 2008 already, the Innsbruck physicists found Feshbach resonances in an ultracold gas mixture consisting of lithium and potassium atoms, which they have used to modify quantum mechanical interactions between particles in a controlled way by applying a magnetic field. In the meantime, they have overcome all technical challenges and are now the first to also produce strong interactions between those particles. “The magnetic fields have to be adjusted precisely to one in 100000 and controlled accurately to achieve this result,“ explains Florian Schreck.

In the experiment the physicists prepare the ultracold gases of lithium-6 (Li) and potassium-40 (K) atoms in an optical trap and overlap them, with the smaller cloud of heavier K atoms residing in the centre of the Li cloud. After turning off the trap, the researchers observe the expansion of the quantum gases at different magnetic fields. “When the particles show a strong interaction, the gas clouds behave hydrodynamically,“ says Schreck. “An elliptical nucleus is formed in the centre of the particle cloud, where the potassium and lithium atoms interact. Moreover, the expansion velocity of the particles, which are different initially, become equal.“ According to theory, both phenomena suggest hydrodynamic behavior of the quantum gas mixture. “This behavior is the most striking phenomenon observed in quantum gases, when particles strongly interact,“ says Rudolf Grimm. “Therefore, this experiment opens up new research areas in the field of many-body physics.“

New possibilities for exciting experiments

High energy physicists have made these two observations as well when producing quark-gluon plasmas in particle accelerators. The Innsbruck quantum gas experiment can be regarded as a model system to investigate cosmic phenomena that occurred immediately after the Big Bang. “In addition and above all, we can also use this system to address many questions of solid-state physics,“ says Rudolf Grimm, who is going to further explore the quantum gas mixture with his research group. “The big goal is to produce quantum condensates, such as Bose-Einstein condensates consisting of molecules made up of lithium and potassium atoms. This will tremendously increase our capabilities to realize novel states of matter.“

The physicists have published their findings in the scientific journal Physical Review Letters. Their work is supported by the Austrian Science Fund (FWF) and the Special Research Area FoQuS, the European Science Foundation ESF within the framework of EuroQUAM, the Wittgenstein award granted by the FWF and the Austrian Ministry of Science.

Publication:
Hydrodynamic Expansion of a Strongly Interacting Fermi-Fermi Mixture. A. Trenkwalder, C. Kohstall, M. Zaccanti, D. Naik, A. I. Sidorov, F. Schreck, R. Grimm. Physical Review Letters 106, 115304 (2011)
DOI: 10.1103/PhysRevLett.106.115304
http://dx.doi.org/10.1103/PhysRevLett.106.115304
Illustration, photos and video interviews: http://bit.ly/iqoqi20110318
Contact:
Dr. Florian Schreck
Institute for Quantum Optics and Quantum Information
Austrian Academy of Sciences
Otto-Hittmair-Platz 1
6020 Innsbruck, Austria
Phone: +43 512 507-4715
Email: florian.schreck@uibk.ac.at
Web: http://www.ultracold.at/
Dr. Christian Flatz
Public Relations
Institute for Quantum Optics and Quantum Information
Austrian Academy of Sciences
Otto-Hittmair-Platz 1, 6020 Innsbruck, Austria
Mobil: +43 650 5777122
E-Mail: pr-iqoqi@oeaw.ac.at

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://www.iqoqi.at

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>