Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IceCube neutrino observatory nears complete

01.09.2010
In December 2010, IceCube -- the world's first kilometer-scale neutrino observatory, which is located beneath the Antarctic ice -- will finally be completed after two decades of planning.

In an article in the AIP's Review of Scientific Instruments, Francis Halzen, the principal investigator of the IceCube project, and his colleague Spencer Klein of Lawrence Berkeley National Laboratory provide a comprehensive description of the observatory, its instrumentation, and its scientific mission—including its most publicized goal: finding the sources of cosmic rays.

"Almost a century after their discovery, we do not know from where the most energetic particles to hit the Earth originate and how they acquire their incredible energies," says Halzen, a professor of physics at the University of Wisconsin in Madison.

After light, neutrinos, which are created in the decay of radioactive particles, are the most abundant particles in the universe. High-energy neutrinos are formed in the universe's most violent events, like exploding stars and gamma ray bursts. Because the neutrino has no charge, essentially no mass, and only interacts weakly with matter, trillions of neutrinos pass through our bodies each day, without effect. On extremely rare occasions, a neutrino will strike the nucleus of an atom, creating a particle, called a muon, and blue light that can be detected with optical sensors. The trick is spying those collisions—and, in particular, the collisions of high-energy neutrinos. IceCube does it by sheer virtue of its size.

At 1 kilometer on a side -- with 5,160 optical sensors occupying a gigaton of ice -- the observatory is orders of magnitude bigger than other neutrino detectors; the Superkamiokande detector in the Japanese Alps, for example, is only 40 meters on a side.

"IceCube has been totally optimized for size in order to be sensitive to the very small neutrino fluxes that may reveal the sources of cosmic rays and the particle nature of dark matter," Halzen says.

The article, "IceCube: An instrument for neutrino astronomy" by Francis Halzen and Spencer R. Klein appears in the journal Review of Scientific Instruments. See: http://rsi.aip.org/resource/1/rsinak/v81/i8/p081101_s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

This work is supported by the National Science Foundation.

NOTE: Images are available for journalists. Please contact jbardi@aip.org

First Image Caption: Signals from the sensors are carried by cables to the IceCube counting house that houses a large cluster of computers to reconstruct in real time some 2,000 muon tracks every second. (Photo by J. Haugen, This material is based upon work supported by the National Science Foundation. The news media is free to use the image.)

Second Image Caption: IceCube scientists deploy a calibration light source, called the Standard Candle in one of the 2.5 km deep holes. Each of the 86 holes contains a string of 60 Digital Optical Modules (DOMs) that detect the blue light from neutrino events in the deep, clear ice. (Photo by J. Haugen, This material is based upon work supported by the National Science Foundation. The news media is free to use the image.)

REVIEW OF SCIENTIFIC INSTRUMENTS

Review of Scientific Instruments, published by the American Institute of Physics, is devoted to scientific instruments, apparatus, and techniques. Its contents include original and review articles on instruments in physics, chemistry, and the life sciences; and sections on new instruments and new materials. One volume is published annually. Conference proceedings are occasionally published and supplied in addition to the Journal's scheduled monthly issues. RSI publishes information on instruments, apparatus, techniques of experimental measurement, and related mathematical analysis. Since the use of instruments is not confined to the physical sciences, the journal welcomes contributions from any of the physical and biological sciences and from related cross-disciplinary areas of science and technology. See: http://rsi.aip.org/

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

Further reports about: AIP IceCube Science TV blue light cosmic ray exploding star optical sensors

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>