IBEX spacecraft measures changes in the direction of interstellar winds buffeting our solar system

Interstellar atoms flow past the Earth as the solar system passes through the surrounding interstellar cloud at 23 kilometers per second (50,000 miles per hour).

The latest IBEX measurements of the interstellar wind direction were discovered to differ from those made by the Ulysses spacecraft in the 1990s. That difference led the IBEX team to compare the IBEX measurements to data gathered by 11 spacecraft between 1972 and 2011.

Statistical testing of the Earth-orbiting and interplanetary spacecraft data showed that, over the past 40 years, the longitude of the interstellar helium wind has changed by 6.8 ± 2.4 degrees.

“We concluded it's highly likely that the direction of the interstellar wind has changed over the past 40 years. It's also highly unlikely that the direction of the interstellar helium wind has remained constant,” says Dr. Priscilla Frisch, lead author of the study and a senior scientist in the Department of Astronomy and Astrophysics at the University of Chicago.

“We think the change in wind direction could be explained by turbulence in the interstellar cloud around the Sun,” she says.

The spacecraft data used for this study were gathered using three methods to measure the neutral interstellar helium wind direction: IBEX and Ulysses provided direct in situ measurements of the neutral wind; the earliest measurements from the 1970s used fluorescence of solar extreme ultraviolet radiation of the helium atoms near the Sun; and measurements also were included of the helium flow direction from “pickup ions,” neutral particles in the solar system that become ionized near the Sun and join the solar wind.

“This result is really stunning,” says Dr. Dave McComas, IBEX principal investigator, assistant vice president of the Space Science and Engineering Division at Southwest Research Institute, and an author on the paper. “Previously we thought the very local interstellar medium was very constant, but these results show just how dynamic the solar system’s interaction is.”

The paper, “Decades-long Changes of the Interstellar Wind Through our Solar System,” by P.C. Frisch, M. Bzowski, G., Livadiotis, D.J. McComas, E. Moebius, H.-R. Mueller, W.R. Pryor, N.A. Schwadron, J.M. Sokol, J.V. Vallerga and J.M. Ajello, was published today in the journal Science.

IBEX is one of NASA's series of low-cost, rapidly developed Small Explorer space missions. Southwest Research Institute in San Antonio leads the IBEX mission with teams of national and international partners. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the Explorers Program for NASA's Science Mission Directorate in Washington.

For more information, contact Maria Martinez at (210) 522-3305, Communications Department, PO Drawer 28510, San Antonio, TX 78228-0510.

Media Contact

Maria Martinez EurekAlert!

More Information:

http://www.swri.org

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors