Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IBEX spacecraft images the heliotail, revealing an unexpected structure

11.07.2013
NASA's Interstellar Boundary Explorer (IBEX) spacecraft recently provided the first complete pictures of the solar system's downwind region, revealing a unique and unexpected structure.

Researchers have long theorized that, like a comet, a "tail" trails the heliosphere, the giant bubble in which our solar system resides, as the heliosphere moves through interstellar space. The first IBEX images released in 2009 showed an unexpected ribbon of surprisingly high energetic neutral atom (ENA) emissions circling the upwind side of the solar system. With the collection of additional ENAs over the first year of observations, a structure dominated by lower energy ENAs emerged, which was preliminarily identified as the heliotail. However, it was quite small and appeared to be offset from the downwind direction, possibly because of interactions from the galaxy's external magnetic field.

As the next two years of IBEX data filled in the observational hole in the downwind direction, researchers found a second tail region to the side of the previously identified one. The IBEX team reoriented the IBEX maps and two similar, low-energy ENA structures became clearly visible straddling the downwind direction of the heliosphere, indicating structures that better resemble "lobes" than a single unified tail.

"We chose the term 'lobes' very carefully," says Dr. Dave McComas, IBEX principal investigator and assistant vice president of the Space Science and Engineering Division at Southwest Research Institute. "It may well be that these are separate structures bent back toward the downwind direction. However, we can't say that for certain with the data we have today."

The team adopted the nautical terms port and starboard to distinguish the lobes, as the heliosphere is the "vessel" that transports our solar system throughout the galaxy.

IBEX data show the heliotail is the region where the Sun's million mile per hour solar wind flows down and ultimately escapes the heliosphere, slowly evaporating because of charge exchange. The slow solar wind heads down the tail in the port and starboard lobes at low- and mid-latitudes and, at least around the Sun's minimum in solar activity, fast solar wind flows down it at high northern and southern latitudes.

"We're seeing a heliotail that's much flatter and broader than expected, with a slight tilt," says McComas. "Imagine sitting on a beach ball. The ball gets flattened by the external forces and its cross section is oval instead of circular. That's the effect the external magnetic field appears to be having on the heliotail."

The IBEX spacecraft uses two novel ENA cameras to image and map the heliosphere's global interaction, providing the first global views and new knowledge about our solar system's interaction with interstellar space.

"We often think we know what we're going to study in science, but the work sometimes takes us in unexpected directions," says McComas. "That was certainly the case with this study, which started by simply trying to better quantify the small structure incorrectly identified as an 'offset heliotail.' The heliotail we found was much bigger and very different from what we expected."

The paper, "The heliotail revealed by IBEX," by D.J. McComas, M.A. Dayeh, H.O. Funsten, G. Livadiotis, and N.A. Schwadron, was published today in the Astrophysical Journal.

IBEX is part of NASA's series of low-cost, rapidly developed Small Explorer space missions. Southwest Research Institute in San Antonio leads the IBEX mission with teams of national and international partners. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the Explorers Program for NASA's Science Mission Directorate in Washington.

Editors: Images to accompany this story are available at http://svs.gsfc.nasa.gov/vis/a010000/a011300/a011301/ .

Maria Martinez | EurekAlert!
Further information:
http://www.swri.org
http://svs.gsfc.nasa.gov/vis/a010000/a011300/a011301/

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>