Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iapetus, Saturn's Strange Walnut Moon

14.12.2010
As space-based probes and telescopes reveal new and unimaginable features of our universe, a geological landmark on Saturn's moon Iapetus is among the most peculiar.

Images provided by NASA's Cassini spacecraft in 2005 reveal an almost straight-line equatorial mountain range that towers upwards of 12 miles and spreads as wide as 60 miles, encircling more than 75 percent of Iapetus, the ringed planet's third-largest moon, and causing it to resemble a walnut.

"There's nothing else like it in the solar system," said Andrew Dombard, associate professor of earth and environmental sciences at the University of Illinois at Chicago. "It's something we've never seen before and didn't expect to see."

Some scientists have hypothesized that Iapetus's mountains were formed by internal forces such as volcanism, but Dombard, along with Andrew Cheng, chief scientist in the space department at the Johns Hopkins University Applied Physics Laboratory, William McKinnon, professor of earth and planetary sciences at Washington University in St. Louis and Jonathan Kay, a UIC graduate student studying with Dombard, think the mountains resulted from icy debris raining down from a sub-satellite or mini-moon orbiting Iapetus, which burst into bits under tidal forces of the larger moon.

"Imagine all of these particles coming down horizontally across the equatorial surface at about 400 meters per second -- the speed of a rifle bullet, one after another, like frozen baseballs," said McKinnon. "At first the debris would have made holes to form a groove that eventually filled up."

Dombard and his collaborators think the phenomenon is the result of what planetary scientists call a giant impact, where crashing and coalescing debris during the solar system's formation more than 4 billion years ago created satellites such as the Earth's Moon and Pluto's largest satellite Charon.

They've done a preliminary analysis demonstrating the plausibility of impact formation and subsequent evolution of Iapetus's sub-satellite. Dombard said Iapetus is the solar system's moon with the largest "hill sphere" -- the zone surrounding a moon where the gravitational force is stronger than that of the planet it circles.

"It is the only moon far enough from its planet, and large enough relative to its planet, that a giant impact may be able to form a sub-satellite," said Cheng.

This lends plausibility to the rain of debris along the equator hypothesis, Dombard said, but he adds that more sophisticated computer modeling and analysis is planned in the coming years to back it up.

Other explanations have been proposed by scientists as to what caused this odd formation of mountains on Iapetus, but Dombard said they all have shortcomings.

"There are three critical observations that you need to explain," he said. "Why the mountains sit on the equator, why it's found only on the equator, and why only on Iapetus? Previous models address maybe one or two of those critical observations. We think we can explain all three."

The planetary scientists will present details of their model Dec. 15 at the American Geophysical Union's fall meeting in San Francisco.

Paul Francuch
francuch@uic.edu
(312) 996-3457
Diana Lutz, Washington University, (314) 935-5272, dlutz@wustl.edu
Michael Buckley, Johns Hopkins, (443) 567-3145, Michael.Buckley@jhuapl.edu

Paul Francuch | Newswise Science News
Further information:
http://www.uic.edu

More articles from Physics and Astronomy:

nachricht Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution
22.06.2017 | NASA/Goddard Space Flight Center

nachricht New femto-camera with quadrillion fractions of a second resolution
22.06.2017 | ITMO University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>