Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iapetus, Saturn's Strange Walnut Moon

14.12.2010
As space-based probes and telescopes reveal new and unimaginable features of our universe, a geological landmark on Saturn's moon Iapetus is among the most peculiar.

Images provided by NASA's Cassini spacecraft in 2005 reveal an almost straight-line equatorial mountain range that towers upwards of 12 miles and spreads as wide as 60 miles, encircling more than 75 percent of Iapetus, the ringed planet's third-largest moon, and causing it to resemble a walnut.

"There's nothing else like it in the solar system," said Andrew Dombard, associate professor of earth and environmental sciences at the University of Illinois at Chicago. "It's something we've never seen before and didn't expect to see."

Some scientists have hypothesized that Iapetus's mountains were formed by internal forces such as volcanism, but Dombard, along with Andrew Cheng, chief scientist in the space department at the Johns Hopkins University Applied Physics Laboratory, William McKinnon, professor of earth and planetary sciences at Washington University in St. Louis and Jonathan Kay, a UIC graduate student studying with Dombard, think the mountains resulted from icy debris raining down from a sub-satellite or mini-moon orbiting Iapetus, which burst into bits under tidal forces of the larger moon.

"Imagine all of these particles coming down horizontally across the equatorial surface at about 400 meters per second -- the speed of a rifle bullet, one after another, like frozen baseballs," said McKinnon. "At first the debris would have made holes to form a groove that eventually filled up."

Dombard and his collaborators think the phenomenon is the result of what planetary scientists call a giant impact, where crashing and coalescing debris during the solar system's formation more than 4 billion years ago created satellites such as the Earth's Moon and Pluto's largest satellite Charon.

They've done a preliminary analysis demonstrating the plausibility of impact formation and subsequent evolution of Iapetus's sub-satellite. Dombard said Iapetus is the solar system's moon with the largest "hill sphere" -- the zone surrounding a moon where the gravitational force is stronger than that of the planet it circles.

"It is the only moon far enough from its planet, and large enough relative to its planet, that a giant impact may be able to form a sub-satellite," said Cheng.

This lends plausibility to the rain of debris along the equator hypothesis, Dombard said, but he adds that more sophisticated computer modeling and analysis is planned in the coming years to back it up.

Other explanations have been proposed by scientists as to what caused this odd formation of mountains on Iapetus, but Dombard said they all have shortcomings.

"There are three critical observations that you need to explain," he said. "Why the mountains sit on the equator, why it's found only on the equator, and why only on Iapetus? Previous models address maybe one or two of those critical observations. We think we can explain all three."

The planetary scientists will present details of their model Dec. 15 at the American Geophysical Union's fall meeting in San Francisco.

Paul Francuch
francuch@uic.edu
(312) 996-3457
Diana Lutz, Washington University, (314) 935-5272, dlutz@wustl.edu
Michael Buckley, Johns Hopkins, (443) 567-3145, Michael.Buckley@jhuapl.edu

Paul Francuch | Newswise Science News
Further information:
http://www.uic.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>