Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen opens the road to graphene … and graphane

09.05.2011
An international research team has discovered a new method to produce belts of graphene called nanoribbons. By using hydrogen, they have managed to unzip single-walled carbon nanotubes. The method also opens the road for producing nanoribbons of graphane, a modified and promising version of graphene.

A thin flake plain carbon, just one atom thick, became world famous last year. The discovery of the super material graphene gave Andre Geim and Konstantin Novoselov the Nobel Prize in Physics 2010. Graphene has a wide range of unusual and highly interesting properties. As a conductor of electricity it performs as well as copper. As a conductor of heat it outperforms all other known materials.

There are possibilities to achieve strong variations of the graphene properties for instance by making graphene in a form of belts with various width, so called nanoribbons. Nanoribbons were prepared for the first time two years ago. A method to produce them is to start from carbon nanotubes and to use oxygen treatment to unzip into nanoribbons. However, this method leaves oxygen atoms on the edges of nanoribbons, which is not always desirable.

In the new study the research team shows that it is also possible to unzip single-walled carbon nanotubes by using a reaction with molecular hydrogen. Nanoribbons produced by the new method will have hydrogen on the edges and this can be an advantage for some applications. Alexandr Talyzin, physicist at Umeå University in Sweden, has over the past decade been studying how hydrogen reacts with fullerenes, which are football-shaped carbon molecules.

“Treating the carbon nanotubes with hydrogen was a logical extension of our research. Our previous experience has been of great help in this work,” says Alexandr Talyzin.

Nanotubes are typically closed by semi-spherical cups, essentially halves of fullerene molecules. The researchers have previously proved that fullerene molecules can be completely destroyed by very strong hydrogenation. Therefore, they expected similar results for nanotube end cups and tried to open the nanotubes by using hydrogenation. The effect was indeed confirmed and they also managed to reveal some other exciting effects.

The most interesting discovery was that some carbon nanotubes were unzipped into graphene nanoribbons as a result of prolonged hydrogen treatment. What is even more exciting – unzipping of nanotube with hydrogen attached to the side walls could possibly lead to synthesis of hydrogenated graphene: graphane. So far, graphane was attempted to be synthesized mostly by reaction of hydrogen with graphene. This appeared to be very difficult, especially if the graphene is supported on some substrate and only one side is available for the reaction. However, hydrogen reacts much easier with the curved surface of carbon nanotubes.

“Our new idea is to use hydrogenated nanotubes and unzip them into graphane nanoribbons. So far, only the first step towards graphane nanoribbon synthesis is done and a lot more work is required to make our approach effective,” explains Alexandr Talyzin. “Combined experience and expertise from several groups at different universities, was a key to success.”

Ilya V. Anoshkin, Albert G. Nasibulin, Jiang Hua and Esko I. Kauppinen at Aalto University are experts in the synthesis and characterization of singled-walled carbon nanotubes. Valery M. Mikoushkin, Vladimir V. Shnitov and Dmitry E. Marchenko from St. Petersburg made XPS and other characterization using synchrotron radiation. Dag Noréus at Stockholm University shared his expertise with high temperature hydrogen reactors.

Original publication
Title: Hydrogenation, Purification, and Unzipping of Carbon Nanotubes by Reaction with Molecular Hydrogen: Road to Graphane Nanoribbons

Authors: Alexandr V. Talyzin, Serhiy Luzan, Ilya V. Anoshkin, Albert G. Nasibulin, Hua Jiang, Esko I. Kauppinen, Valery M. Mikoushkin, Vladimir V. Shnitov, Dmitry E. Marchenko, and Dag Noréus

For further information, please contact:
Dr. Alexandr Talyzin, Department of Physics, Umeå University
Phone: +46 (0)90-786 63 20
E-mail: alexandr.talyzin@physics.umu.se

Karin Wikman | idw
Further information:
http://pubs.acs.org/doi/abs/10.1021/nn201224k
http://www.vr.se

Further reports about: Hydrogen Nobel Prize carbon nanotubes nanoribbons oxygen atom

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>