Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen opens the road to graphene … and graphane

09.05.2011
An international research team has discovered a new method to produce belts of graphene called nanoribbons. By using hydrogen, they have managed to unzip single-walled carbon nanotubes. The method also opens the road for producing nanoribbons of graphane, a modified and promising version of graphene.

A thin flake plain carbon, just one atom thick, became world famous last year. The discovery of the super material graphene gave Andre Geim and Konstantin Novoselov the Nobel Prize in Physics 2010. Graphene has a wide range of unusual and highly interesting properties. As a conductor of electricity it performs as well as copper. As a conductor of heat it outperforms all other known materials.

There are possibilities to achieve strong variations of the graphene properties for instance by making graphene in a form of belts with various width, so called nanoribbons. Nanoribbons were prepared for the first time two years ago. A method to produce them is to start from carbon nanotubes and to use oxygen treatment to unzip into nanoribbons. However, this method leaves oxygen atoms on the edges of nanoribbons, which is not always desirable.

In the new study the research team shows that it is also possible to unzip single-walled carbon nanotubes by using a reaction with molecular hydrogen. Nanoribbons produced by the new method will have hydrogen on the edges and this can be an advantage for some applications. Alexandr Talyzin, physicist at Umeå University in Sweden, has over the past decade been studying how hydrogen reacts with fullerenes, which are football-shaped carbon molecules.

“Treating the carbon nanotubes with hydrogen was a logical extension of our research. Our previous experience has been of great help in this work,” says Alexandr Talyzin.

Nanotubes are typically closed by semi-spherical cups, essentially halves of fullerene molecules. The researchers have previously proved that fullerene molecules can be completely destroyed by very strong hydrogenation. Therefore, they expected similar results for nanotube end cups and tried to open the nanotubes by using hydrogenation. The effect was indeed confirmed and they also managed to reveal some other exciting effects.

The most interesting discovery was that some carbon nanotubes were unzipped into graphene nanoribbons as a result of prolonged hydrogen treatment. What is even more exciting – unzipping of nanotube with hydrogen attached to the side walls could possibly lead to synthesis of hydrogenated graphene: graphane. So far, graphane was attempted to be synthesized mostly by reaction of hydrogen with graphene. This appeared to be very difficult, especially if the graphene is supported on some substrate and only one side is available for the reaction. However, hydrogen reacts much easier with the curved surface of carbon nanotubes.

“Our new idea is to use hydrogenated nanotubes and unzip them into graphane nanoribbons. So far, only the first step towards graphane nanoribbon synthesis is done and a lot more work is required to make our approach effective,” explains Alexandr Talyzin. “Combined experience and expertise from several groups at different universities, was a key to success.”

Ilya V. Anoshkin, Albert G. Nasibulin, Jiang Hua and Esko I. Kauppinen at Aalto University are experts in the synthesis and characterization of singled-walled carbon nanotubes. Valery M. Mikoushkin, Vladimir V. Shnitov and Dmitry E. Marchenko from St. Petersburg made XPS and other characterization using synchrotron radiation. Dag Noréus at Stockholm University shared his expertise with high temperature hydrogen reactors.

Original publication
Title: Hydrogenation, Purification, and Unzipping of Carbon Nanotubes by Reaction with Molecular Hydrogen: Road to Graphane Nanoribbons

Authors: Alexandr V. Talyzin, Serhiy Luzan, Ilya V. Anoshkin, Albert G. Nasibulin, Hua Jiang, Esko I. Kauppinen, Valery M. Mikoushkin, Vladimir V. Shnitov, Dmitry E. Marchenko, and Dag Noréus

For further information, please contact:
Dr. Alexandr Talyzin, Department of Physics, Umeå University
Phone: +46 (0)90-786 63 20
E-mail: alexandr.talyzin@physics.umu.se

Karin Wikman | idw
Further information:
http://pubs.acs.org/doi/abs/10.1021/nn201224k
http://www.vr.se

Further reports about: Hydrogen Nobel Prize carbon nanotubes nanoribbons oxygen atom

More articles from Physics and Astronomy:

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>