Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen gas: Under pressure

17.01.2011
Simulations have explained the peculiar nature of molecular hydrogen vibration under high pressure

Most of our Universe consists of hydrogen atoms, which are often found under extraordinarily high pressure as high as tens of millions of times the atmospheric pressure of Earth. Understanding the exotic physics of such a high-pressure regime will contribute to our understanding of planet formation, hydrogen storage, room temperature superconductivity and other fields, explains Toshiaki Iitaka from the RIKEN Advanced Science Institute in Wako.


Figure 1: Traces of the positions of silane and hydrogen molecules over time at 32 GPa, obtained from molecular dynamics calculations. Hydrogen atoms at tetrahedral (white) and octahedral (red) sites are shown. Silicon atoms at so-called ‘face-centered cubic’ sites are shown by gray spheres.
Copyright : 2010 The American Physical Society

Iitaka, along with colleagues from the Institute of High Performance Computing in Singapore and the University of Saskatchewan in Canada, recently uncovered the physical basis underlying a newly discovered behavior of hydrogen molecules under high pressure[1].

This behavior was observed in a complex of hydrogen molecules, and hydrogen bound to silicon, which is called silane. Silane’s hydrogen atoms are under so-called 'chemical compression' by virtue of their being part of a chemical bond. In 2009, physicists found that the vibrational frequency of hydrogen molecules in silane–hydrogen complexes fell as the applied pressure rose. This anti-correlation was the opposite of previous observations of high-pressure hydrogen.

Iitaka and colleagues modeled the system using molecular dynamics simulations. They first optimized the relative arrangement of hydrogen and silane molecules inside a unit cell, finding that the hydrogen molecules tend to sit at octahedral and tetrahedral sites (Fig. 1). They then computed the vibrational frequencies of the hydrogen molecules, and found two groups of vibrational modes, one at high energy and one at low energy.

The frequencies of the lower-energy group decreased monotonically as applied pressure increased. However, the frequencies of the higher-energy group increased with pressure until about 20.1 giga Pascals (GPa), after which they fell. This reproduced the experimentally observed anti-correlation between vibrational frequency and applied pressure, indicating that the simulation was accurate.

The simulations also revealed that this rise and fall in frequencies resulted from interactions between hydrogen and silane molecules. These interactions resulted from the overlap between the filled electron orbitals of one molecule and the empty orbitals of the other molecule. This overlap stabilizes the system, and its strength depends on the distance between the molecules. This distance, in turn, depends on the applied pressure.

The simulation results are another glimpse into the exotic physics that underpins the high-pressure regime, according to Iitaka. “We have shown that there is much more interesting new physics and chemistry to be explored in the world of high pressure.”

The corresponding author for this highlight is based at the Computational Astrophysics Laboratory, RIKEN Advanced Science Institute.

Journal information

[1] Yim, W.-L., Tse, J.S. & Iitaka, T. Pressure-induced intermolecular interactions in crystalline silane-hydrogen. Physical Review Letters 105, 215501 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6495
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>