Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen gas: Under pressure

17.01.2011
Simulations have explained the peculiar nature of molecular hydrogen vibration under high pressure

Most of our Universe consists of hydrogen atoms, which are often found under extraordinarily high pressure as high as tens of millions of times the atmospheric pressure of Earth. Understanding the exotic physics of such a high-pressure regime will contribute to our understanding of planet formation, hydrogen storage, room temperature superconductivity and other fields, explains Toshiaki Iitaka from the RIKEN Advanced Science Institute in Wako.


Figure 1: Traces of the positions of silane and hydrogen molecules over time at 32 GPa, obtained from molecular dynamics calculations. Hydrogen atoms at tetrahedral (white) and octahedral (red) sites are shown. Silicon atoms at so-called ‘face-centered cubic’ sites are shown by gray spheres.
Copyright : 2010 The American Physical Society

Iitaka, along with colleagues from the Institute of High Performance Computing in Singapore and the University of Saskatchewan in Canada, recently uncovered the physical basis underlying a newly discovered behavior of hydrogen molecules under high pressure[1].

This behavior was observed in a complex of hydrogen molecules, and hydrogen bound to silicon, which is called silane. Silane’s hydrogen atoms are under so-called 'chemical compression' by virtue of their being part of a chemical bond. In 2009, physicists found that the vibrational frequency of hydrogen molecules in silane–hydrogen complexes fell as the applied pressure rose. This anti-correlation was the opposite of previous observations of high-pressure hydrogen.

Iitaka and colleagues modeled the system using molecular dynamics simulations. They first optimized the relative arrangement of hydrogen and silane molecules inside a unit cell, finding that the hydrogen molecules tend to sit at octahedral and tetrahedral sites (Fig. 1). They then computed the vibrational frequencies of the hydrogen molecules, and found two groups of vibrational modes, one at high energy and one at low energy.

The frequencies of the lower-energy group decreased monotonically as applied pressure increased. However, the frequencies of the higher-energy group increased with pressure until about 20.1 giga Pascals (GPa), after which they fell. This reproduced the experimentally observed anti-correlation between vibrational frequency and applied pressure, indicating that the simulation was accurate.

The simulations also revealed that this rise and fall in frequencies resulted from interactions between hydrogen and silane molecules. These interactions resulted from the overlap between the filled electron orbitals of one molecule and the empty orbitals of the other molecule. This overlap stabilizes the system, and its strength depends on the distance between the molecules. This distance, in turn, depends on the applied pressure.

The simulation results are another glimpse into the exotic physics that underpins the high-pressure regime, according to Iitaka. “We have shown that there is much more interesting new physics and chemistry to be explored in the world of high pressure.”

The corresponding author for this highlight is based at the Computational Astrophysics Laboratory, RIKEN Advanced Science Institute.

Journal information

[1] Yim, W.-L., Tse, J.S. & Iitaka, T. Pressure-induced intermolecular interactions in crystalline silane-hydrogen. Physical Review Letters 105, 215501 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6495
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht NASA Protects its super heroes from space weather
17.08.2017 | NASA/Johnson Space Center

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

NASA Protects its super heroes from space weather

17.08.2017 | Physics and Astronomy

Spray-on electric rainbows: Making safer electrochromic inks

17.08.2017 | Materials Sciences

Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>