Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen gas: Under pressure

17.01.2011
Simulations have explained the peculiar nature of molecular hydrogen vibration under high pressure

Most of our Universe consists of hydrogen atoms, which are often found under extraordinarily high pressure as high as tens of millions of times the atmospheric pressure of Earth. Understanding the exotic physics of such a high-pressure regime will contribute to our understanding of planet formation, hydrogen storage, room temperature superconductivity and other fields, explains Toshiaki Iitaka from the RIKEN Advanced Science Institute in Wako.


Figure 1: Traces of the positions of silane and hydrogen molecules over time at 32 GPa, obtained from molecular dynamics calculations. Hydrogen atoms at tetrahedral (white) and octahedral (red) sites are shown. Silicon atoms at so-called ‘face-centered cubic’ sites are shown by gray spheres.
Copyright : 2010 The American Physical Society

Iitaka, along with colleagues from the Institute of High Performance Computing in Singapore and the University of Saskatchewan in Canada, recently uncovered the physical basis underlying a newly discovered behavior of hydrogen molecules under high pressure[1].

This behavior was observed in a complex of hydrogen molecules, and hydrogen bound to silicon, which is called silane. Silane’s hydrogen atoms are under so-called 'chemical compression' by virtue of their being part of a chemical bond. In 2009, physicists found that the vibrational frequency of hydrogen molecules in silane–hydrogen complexes fell as the applied pressure rose. This anti-correlation was the opposite of previous observations of high-pressure hydrogen.

Iitaka and colleagues modeled the system using molecular dynamics simulations. They first optimized the relative arrangement of hydrogen and silane molecules inside a unit cell, finding that the hydrogen molecules tend to sit at octahedral and tetrahedral sites (Fig. 1). They then computed the vibrational frequencies of the hydrogen molecules, and found two groups of vibrational modes, one at high energy and one at low energy.

The frequencies of the lower-energy group decreased monotonically as applied pressure increased. However, the frequencies of the higher-energy group increased with pressure until about 20.1 giga Pascals (GPa), after which they fell. This reproduced the experimentally observed anti-correlation between vibrational frequency and applied pressure, indicating that the simulation was accurate.

The simulations also revealed that this rise and fall in frequencies resulted from interactions between hydrogen and silane molecules. These interactions resulted from the overlap between the filled electron orbitals of one molecule and the empty orbitals of the other molecule. This overlap stabilizes the system, and its strength depends on the distance between the molecules. This distance, in turn, depends on the applied pressure.

The simulation results are another glimpse into the exotic physics that underpins the high-pressure regime, according to Iitaka. “We have shown that there is much more interesting new physics and chemistry to be explored in the world of high pressure.”

The corresponding author for this highlight is based at the Computational Astrophysics Laboratory, RIKEN Advanced Science Institute.

Journal information

[1] Yim, W.-L., Tse, J.S. & Iitaka, T. Pressure-induced intermolecular interactions in crystalline silane-hydrogen. Physical Review Letters 105, 215501 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6495
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>